Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hướng dẫn 1 phần : ko biết thì hỏi
a) áp dụng tính chất của dãy tỉ số bằng nhau ta có
\(\frac{x}{4}=\frac{y}{5}=\frac{y-x}{5-4}=15\)
\(\Rightarrow\hept{\begin{cases}x=15.4=60\\y=15.5=75\end{cases}}\)
Vạy \(\hept{\begin{cases}x=60\\y=75\end{cases}}\)
a/ Ta có: \(\hept{\begin{cases}\frac{x}{2}=\frac{y}{5}\left(1\right)\\x^2+y^2=52\left(2\right)\end{cases}}\).
Từ (1) => \(\frac{x^2}{4}=\frac{y^2}{25}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có: \(\frac{x^2}{4}=\frac{y^2}{25}=\frac{x^2+y^2}{4+25}=\frac{52}{29}\)
=> \(\frac{x}{2}=\frac{52}{29}\)=> x = \(\frac{2.52}{29}\approx4\)
=> \(\frac{y}{5}=\frac{52}{29}\)=> y = \(\frac{5.52}{29}\approx9\)
Vậy \(x\approx4\)và \(y\approx9\).
x : y = 7 : 9
=> x/7 = y/9
Theo tính chất của dãy tỉ số bằng nhau:
x/7 = y/9 = x2 + y2 / 49 + 81 = 130 / 130 = 1
x/7 = 1 => 7.1 = 7
y/9 = 1 => 9.1 = 9
vậy x = 7; y = 9