Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
P/s: Bn tham khảo nha
căn bậc hai hai vế rồi dùng tam giác pascal để triển khai,triệt để hai bên sẽ ra kết quả,tự tìm hiểu sẽ hay hơn bạn nhé
a, các số từ 1 đến 100 chia hết cho 5 là :
5; 10; 15; 20; ...; 100
số số chia hết cho 5 là :
(100 - 5) : 5 + 1 = 20 (số)
b, 1015 + 8
1015 = 10...0 chia hết cho 2
8 chia hết cho 2
nên 1015 + 8 chia hết cho 2
1015 + 8 = 10..00 + 8
tổng các chữ số của 1015 + 8 là :
1 + 0 + 0 + ... + 0 + 8 = 9 chia hết cho 9
vậy 1015 + 8 chia hết cho cả 2 và 9
a) 305 - 5x = 290
5.(61-x) = 290
61-x = 58
x = 3
b) (3x - 24) .25 = 26
3x - 24 = 2
3x = 18
x=6
c) 8 + 3.(x-5)2 = 35
3.(x-5)2 = 27
(x-5)2 = 9 = 32 = (-3)2
=> x - 5 = 3 => x = 8
x-5 = - 3 => x = 2
KL:>.
d) 21 chia hết cho x - 2
\(\Rightarrow x-2\inƯ_{\left(21\right)}=\left\{\pm1;\pm3;\pm7;\pm21\right\}.\)
..
rùi bn tự lập bảng xét giá trị nhé
a, \(\frac{6^5\cdot27^2}{7^3\cdot9^5}=\frac{2^5\cdot3^5\cdot\left(3^3\right)^2}{7^3\cdot\left(3^2\right)^5}=\frac{2^5\cdot3^5\cdot3^6}{7^3\cdot3^{10}}=\frac{2^5\cdot3^{11}}{7^3\cdot3^{10}}=\frac{2^5\cdot3}{7^3}\)
b, \(\frac{12^7\cdot9^3}{8^5\cdot27^3}=\frac{3^7\cdot2^{12}\cdot3^6}{2^{15}\cdot3^9}=\frac{2^{12}\cdot3^{13}}{2^{15}\cdot3^9}=\frac{3^4}{2^3}\)
c, \(\frac{20^6\cdot8^2}{16^3\cdot25^3}=\frac{2^{12}\cdot5^6\cdot2^6}{2^{12}\cdot5^6}=2^6\)
\(x^4\cdot x^7\cdot...\cdot x^{100}\)
\(=x^{4+7+...+100}\)
\(=x^{52\cdot33}=x^{1716}\)
\(x^1\cdot x^2\cdot x^3\cdot...\cdot x^{2006}\)
Ta có : \(x^1\cdot x^2=x^{1+2}=x^3\)
Tương tự : \(x^1\cdot x^2\cdot x^3=x^{1+2+3}=x^6\)
Áp dụng vào bài toán :
\(x^1\cdot x^2\cdot x^3\cdot...\cdot x^{2006}=x^{1+2+3+...+2006}\)
\(\Rightarrow x^{1+2+3+...+2006}=x^{2013021}\)
c/ m à