K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 6 2020

\(\left(x-2\right)^2-\left(x-3\right)^2=2\left(3x-1\right)\)

\(\Leftrightarrow\left(x-2-x+3\right)\left(x-2+x-3\right)=2\left(3x-1\right)\)

\(\Leftrightarrow\left(2x-5\right)=2\left(3x-1\right)\)

\(\Leftrightarrow2x-5=6x-2\)

\(\Leftrightarrow2x-6x=5-2\)

\(\Leftrightarrow-4x=3\)

\(\Leftrightarrow x=-\frac{3}{4}\)

Vậy phương trình trên có nghiệm là: \(S=\left\{-\frac{3}{4}\right\}\)

 #hoktot<3# 

17 tháng 8 2020

a, \(12-2\left(1-x\right)^2=\left(3x-2\right)\left(2x-3\right)\)

\(< =>12-2\left(1-2x+x^2\right)=6x^2-9x-4x+6\)

\(< =>12-2+4x-2x^2=6x^2-13x+6\)

\(< =>10+4x-2x^2-6x^2+13x-6=0\)

\(< =>-8x^2+17x+4=0< =>\orbr{\begin{cases}x=\frac{17-\sqrt{417}}{16}\\x=\frac{17+\sqrt{417}}{16}\end{cases}}\)

b, \(10x+3-5x=4x+12< =>5x+3-4x-12=0\)

\(< =>x-9=0< =>x=9\)

c, \(11x+42-2x=100-9x-22< =>9x+42-100+9x+22=0\)

\(< =>18x+64-100=0< =>18x-36=0< =>x=\frac{36}{18}=2\)

d, \(2x-\left(3-5x\right)=4\left(x+3\right)< =>2x-3+5x=4x+12\)

\(< =>7x-3-4x-12=0< =>3x-15=0< =>x=\frac{15}{3}=5\)

e, \(2\left(x-3\right)+5x\left(x-1\right)=5x^2< =>2x-6+5x^2-5=5x^2\)

\(< =>2x-11+5x^2-5x^2=0< =>2x-11=0< =>x=\frac{11}{2}\)

f, \(-6\left(1,5-2x\right)=3\left(-15+2x\right)< =>-6\left(\frac{3}{2}-2x\right)=3\left(2x-15\right)\)

\(< =>-9+12x-6x+45=0< =>6x+36=0< =>x=-6\)

g, \(14x-\left(2x+7\right)=3x+12x-13< =>14x-2x-7=15x-13\)

\(< =>12x-7-15x+13=0< =>-3x+6=0< =>x=-2\)

h, \(\left(x-4\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\)

\(< =>x^2-16-6x+4=x^2-8x+16\)

\(< =>x^2-6x-12-x^2+8x-16=0\)

\(< =>2x-28=0< =>x=\frac{28}{2}=14\)

q, \(4\left(x-2\right)-\left(x-3\right)\left(2x-5\right)=?\)thiếu đề

3 tháng 3 2020

a,

đoạn 9x-6-> 2x-6=0

=> x=3

b,6x^2+13x+5=6x^2-20x+6

33x=1

=>x=1/33

3 tháng 3 2020

a) (x+1)(x+9)=(x+3)(x+5) 

<=>x^2+10x+9=x^2+8x+15

<=>x^2+10x+9-x^2-8x-15=0

<=>9x-6=0 phải là 2x - 6

<=>9x=6

<=>x=6/9=2/3 => S= 2/3

d) (3x+5)(2x+1)=(6x-2)(x-3)

<=>6x^2+13x+5=6x^2-16x+6 phải là 6x^2 - 20x + 6

<=>6x^2+13x+5-6x^2+16x-6=0

<=>29x-1=0

<=>29x=1

<=>x=1/29

20 tháng 1 2017

Giải phương trình:

a) (x+2)- (x-2)= 12x(x-1) - 8

<=> (x+ 3.x2.2 + 3.x.2+ 23) - (x- 3.x2.2 + 3.x.2- 23) - [12x(x-1) - 8] = 0

<=> (x+ 6x+ 12x + 8) - (x- 6x+ 12x - 8) - (12x- 12x - 8) = 0

<=> x+ 6x+ 12x + 8 - x3 + 6x2 - 12x + 8 - 12x2 + 12x + 8 = 0

<=> 12x +32 = 0

<=> x =  \(\frac{-32}{12}\) = \(-2\frac{2}{3}\)         

                                                 Vậy phương trình có nghiệm duy nhất là  \(-2\frac{2}{3}\)

b) (3x-1)- 5(2x+1)+ (6x-3)(2x+1) = (x-1)2

<=> (9x- 6x + 1) - 5(4x+ 4x + 1) + 3(2x - 1)(2x + 1) - (x- 2x +1) = 0

<=> 9x- 6x + 1 - 20x- 20x - 5 + 3(4x2 - 1) - x2 + 2x -1 = 0

<=> 9x- 6x + 1 - 20x- 20x - 5 + 12x2 - 3 - x+ 2x -1 = 0

<=> -24x - 8 = 0

<=> x = \(\frac{-8}{24}\) = \(\frac{-1}{3}\)  

                  Vậy phương trình có nghiệm duy nhất là \(\frac{-1}{3}\)

 

27 tháng 7 2020

( 3x - 1 )( x + 3 ) + 9x2 - 1 = 0

<=> 3x2 + 9x - x - 3 + 9x2 - 1 = 0

<=> 12x2 + 8x - 4 = 0

<=> 4( 3x2 + 2x - 1 ) = 0

<=> 3x2 + 2x - 1 = 0 

<=> 3x2 + 3x - x - 1 = 0

<=> ( 3x2 + 3x ) - ( x + 1 ) = 0

<=> 3x( x + 1 ) - 1( x + 1 ) = 0

<=> ( 3x - 1 )( x + 1 ) = 0

<=> \(\orbr{\begin{cases}3x-1=0\\x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{1}{3}\\x=-1\end{cases}}\)

Vậy S = { 1/3 ; -1 }

\(\frac{x+1}{3}>\frac{3x-2}{5}\)

\(\Leftrightarrow\frac{5\left(x+1\right)}{15}>\frac{3\left(3x-2\right)}{15}\)

\(\Leftrightarrow5x+5>9x-6\)

\(\Leftrightarrow5x-9x>-6-5\)

\(\Leftrightarrow-4x>-11\)

\(\Leftrightarrow x< \frac{11}{4}\)

27 tháng 7 2020

Bài làm:

a) \(\left(3x-1\right)\left(x+3\right)+9x^2-1=0\)

\(\Leftrightarrow3x^2+8x-3+9x^2-1=0\)

\(\Leftrightarrow12x^2+8x-4=0\)

\(\Leftrightarrow3x^2+2x-1=0\)

\(\Leftrightarrow\left(3x^2+3x\right)-\left(x+1\right)=0\)

\(\Leftrightarrow3x\left(x+1\right)-\left(x+1\right)=0\)

\(\Leftrightarrow\left(3x-1\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-1\end{cases}}\)

Vậy tập nghiệm của PT \(S=\left\{-1;\frac{1}{3}\right\}\)

b) \(\frac{x+1}{3}>\frac{3x-2}{5}\Leftrightarrow\frac{5\left(x+1\right)}{15}>\frac{3\left(3x-2\right)}{15}\)

\(\Rightarrow5x+5>9x-6\)

\(\Leftrightarrow4x< 11\)

\(\Rightarrow x< \frac{11}{4}\)