Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
A =2100-299+298-297+.....+22-21
=>2A=2101-2100+299-298+.....+23-22
=>2A+A=(2101-2100+299-298+.....+23-22) + (2100-299+298-297+....+22-21)
=>3A=2101-2
=>A=\(\frac{2^{101}-2}{3}\)
Vậy A=\(\frac{2^{101}-2}{3}\).
\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)
\(\Rightarrow2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)
\(\Rightarrow2A+A=\left(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\right)+\left(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\right)\)
\(\Rightarrow3A=2^{101}-2\)
\(\Rightarrow A=\frac{2^{101}-2}{3}\)
\(\left(-2\frac{3}{4}+\frac{1}{2}\right)^2\)
\(=\left(-\frac{11}{4}+\frac{1}{2}\right)^2\)
\(=\left(-\frac{11}{4}+\frac{2}{4}\right)^2\)
\(=\left(-\frac{9}{4}\right)^2\)
\(=\frac{81}{16}\)
\(\left(-2\frac{3}{4}+\frac{1}{2}\right)^2\)
\(=\left(\frac{-11}{4}+\frac{1}{2}\right)^2\)
\(=\left(\frac{-11}{4}+\frac{2}{4}\right)^2\)
\(=\left(\frac{-9}{4}\right)^2\)
\(=\frac{81}{16}\)
Ta có hình vẽ:
Xét tam giác ABC và tam giác ADE có
-A: góc chung
-AB = AD (GT)
-BE = DC (GT)
Vậy tam giác ABC = tam giác ADE (c.g.c)
g(x) = x14 - 13x13 + 13x12 - 13x11 + ... + 13x2 - 13x + 15
= x14 - (12 + 1)x13 + (12 + 1)x12 - (12 + 1)x11 + ... + (12 + 1)x2 - (12 + 1)x + 15
Tại x = 12 thì ta có:
g(12) = x14 - (x + 1)x13 + (x + 1)x12 - (x + 1)x11 + ... + (x + 1)x2 - (x + 1)x + 15
= x14 - x14 - x13 + x13 + x12 - x12 - x11 + ... + x3 + x2 - x2 - x + 15
= -x + 15
Thay x = 12, ta có:
g(12) = -12 + 15 = 3
Vậy g(12) = 3
+ Với x < -5 thì |x + 5| = -(x + 5) = -x - 5
=> -x - 5 = 4x + 1
=> -x - 4x = 1 + 5
=> -5x = 6
=> \(x=-\frac{6}{5}\), không thỏa mãn x < -5
+ Với \(x\ge-5\) thì |x + 5| = x + 5
=> x + 5 = 4x + 1
=> 4x - x = 5 - 1
=> 3x = 4
=> \(x=\frac{4}{3}\), thỏa mãn \(x\ge-5\)
Vậy \(x=\frac{4}{3}\)
\(\left|x+5\right|=4x+1\)
\(=>\left[\begin{array}{nghiempt}x+5=4x+1\\x+5=-\left(4x+1\right)=-4x-1\end{array}\right.\)
\(=>\left[\begin{array}{nghiempt}3x=4\\5x=-6\end{array}\right.\)
\(=>\left[\begin{array}{nghiempt}x=\frac{4}{3}\\x=-\frac{6}{5}\end{array}\right.\)
Ta có :
\(\left(x-10\right)^{x+1}-\left(x-10\right)^{x+11}=0\)
\(\Leftrightarrow\left(x-10\right)^{x+1}\left[1-\left(x-10\right)^{10}\right]=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-10=0\\1-\left(x-10\right)^{10}=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=10\\\left[\begin{array}{nghiempt}x-10=1\\x-10=-1\end{array}\right.\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=10\\\left[\begin{array}{nghiempt}x=11\\x=9\end{array}\right.\end{array}\right.\)
Vậy x = 10 ; x = 11 ; x = 9
\(\left(x-10\right)^{x+1}-\left(x-10\right)^{x+11}=0\)
\(\Rightarrow\left(x-10\right)^{x+1}.\left[1-\left(x-10\right)^{10}\right]=0\)
\(\Rightarrow\left(x-10\right)^{x+1}=0\) hoặc \(1-\left(x-10\right)^{10}=0\)
+) \(\left(x-10\right)^{x+1}=0\)
\(\Rightarrow x-10=0\)
\(\Rightarrow x=10\)
+) \(1-\left(x-10\right)^{10}=0\)
\(\Rightarrow\left(x-10\right)^{10}=1\)
\(\Rightarrow x-10=\pm1\)
+ \(x-10=1\Rightarrow x=11\)
+ \(x-10=-1\Rightarrow x=9\)
Vậy \(x\in\left\{10;11;9\right\}\)