Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1)\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)\left(x-1\right)\\ =x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\cdot\left(x-1\right)^2\\ =6x^2+2-6\cdot\left(x^2-2x+1\right)\\ =6x^2+2-6x^2+12x-6\\ =12x-4\)
\(2)x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\\ =x\left(x^2-1\right)-\left(x^3+1\right)\\ =x^3-x-x^3-1\\=-x-1\)
\(3)\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3\left(x-4\right)\left(x+4\right)\\ =x^3-3x^2+3x-1-(x^3+8)+3\cdot\left(x^2-16\right)\\ =x^3-3x^2+3x-1-x^3-8+3x^2-48\\ =3x-55\)
a: =x^2+2x-15-x^2+4
=2x-11
b: =x^2-4x+4+x^2+6x+9-2(x^2-1)
=2x^2+2x+13-2x^2+2
=2x+15
c: \(=x^2-4x+4+x^3-1-x^3+4x\)
=x^2+3
d: \(=\left(2x+5-2x+1\right)^2=6^2=36\)
e: \(=x^3+1-x^3+1-x^2=2-x^2\)
1) (x + 1)2 + (x - 1)(x2 + x + 1) + (x - 1)3
= x2 + 2x + 1 + x3 - 1 + x3 - 3x2 + 3x - 1
= 2x3 - 2x2 + 5x + 1
2) (x - 2)2 + (2x + 1)2 + (x + 1)3
= x2 - 4x + 4 + 4x2 + 4x + 1 + x3 + 3x2 + 3x + 1
= x3 + 8x2 + 3x + 6
3) (x + 1)(x2 - x + 1) - (x - 3)2
= x3 + 1 - x2 + 6x - 9
= x3 - x2 + 6x - 8
4) (3x + 2)2 + (2x - 1)2 - (x + 3)2
= 9x2 + 12x + 4 + 4x2 - 4x + 1 - x2 - 6x - 9
= 12x2 + 2x - 4
Bài 3:
a: \(=\left(x^3-1\right)\left(x^3-8\right)\)
\(=\left(1-1\right)\left(1-8\right)=0\)
b: \(=x^3-3x^2+3x-1-4x^3+4x+3\left(x^3-1\right)\)
\(=-3x^3-3x^2+7x-1+3x^3-3\)
\(=-3x^2+7x-4\)
\(=-3\cdot4-14-4=-30\)
\(1a,P=\left(x+2\right)^3+\left(x-2\right)^3-2x\left(x^2+12\right).\)
\(=x^3+6x^2+12x+8+x^3-6x^2+12x-8-2x^3-24=0\)
\(b,Q=\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(=x^3-3x^2+3x-1-x^3-3x^2-3x-1+6\left(x^2-1\right)\)
\(=-6x^2-2+6x^2-6=-8\)
Ta có: \(x+1=\left(x+1\right)^2\)
\(\Leftrightarrow\left(x+1\right)^2-\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+1-1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
x + 1 = ( x + 1 )^2
<=> x + 1 = x^2 + 2x + 1
<=> x^2 + x = 0
<=> x ( x + 1 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)