\(3x^2+y^2+2x-2y=0\), hãy tìm các giá trị nguyên dương của biểu thức A
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 4 2017

rút gọn A

\(A=\dfrac{4xy}{y^2-y^2}:\left(\dfrac{x+y+\left(y-x\right)}{\left(y-x\right)\left(x+y\right)^2}\right)=\dfrac{4xy\left[\left(y-x\right)\left(x+y\right)^2\right]}{2y\left(y-x\right)\left(x+y\right)}\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|x\right|\ne\left|y\right|\\A=2x\left(x+y\right)=2x^2+2xy\end{matrix}\right.\)

\(B=3x^2+y^2+2x-2y\)

\(B-A+1=x^2+y^2+2x-2y-2xy+1=\left(x+1-y\right)^2\)

\(\Rightarrow A\le1\Rightarrow A=1\)\(\Rightarrow x+1-y=0\) thay lại ra được x,y

2 tháng 12 2017

ib tui làm cho 

11 tháng 11 2018

\(P=2x\left(x+y\right)=2x^2+2xy\) Với x khác y, x khác -y

\(3x^2+y^2+2x-2y=1\)\(\Leftrightarrow2x^2+2xy+y^2+x^2+1-2xy+2x-2y=2\)

\(\Leftrightarrow P+\left(x-y+1\right)^2=2\)\(\Leftrightarrow P=2-\left(x-y+1\right)^2\le2\)vì \(\left(x-y+1\right)^2\ge0\)với mọi x, y là số thực

Vì P nguyên dương => P=1 

Khi đó \(\left(x-y+1\right)^2=1\Leftrightarrow\orbr{\begin{cases}x-y+1=-1\\x-y+1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x-y=-2\\x-y=0\left(loai\right)\end{cases}}\)

vì x khác y

24 tháng 1 2017

(a) làm được rồi port lên luôn vì (b) cần cái KQ của (a)

24 tháng 1 2017

Rút gọn ra \(A=y+x\) nhé

22 tháng 6 2018

bài 4: Ta có \(x^2-2y^2=xy\Rightarrow x^2-y^2=xy+y^2\Rightarrow\left(x-y\right)\left(x+y\right)=y\left(x+y\right)\)

\(x-y=y\Rightarrow x=2y\)

thay x=2y vào A ta đc :

A = \(\dfrac{x-y}{x+y}=\dfrac{2y-y}{2y+y}=\dfrac{y}{3y}=\dfrac{1}{3}\)

AH
Akai Haruma
Giáo viên
22 tháng 6 2018

Bài 1:

Ta có: \(x+y+z=0\Rightarrow z=-x-y\Rightarrow z^2=(-x-y)^2\)

\(\Rightarrow x^2+y^2-z^2=x^2+y^2=x^2+y^2-(-x-y)^2=-2xy\)

Hoàn toàn tương tự:

\(y^2+z^2-x^2=-2yz; z^2+x^2-y^2=-2xz\)

Do đó:

\(P=\frac{(x^2+y^2-z^2)(y^2+z^2-x^2)(z^2+x^2-y^2)}{16xyz}=\frac{(-2xy)(-2yz)(-2xz)}{16xyz}=\frac{-xyz}{2}\)