K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
Đường tròn tâm \(O\left(0;0\right)\) bán kính \(R=2\)
a/ Tiếp tuyến d' song song d nên có dạng: \(3x-y+c=0\) \(\left(c\ne17\right)\)
Do d' là tiếp tuyến
\(\Leftrightarrow d\left(O;d'\right)=R\)
\(\Leftrightarrow\frac{\left|3.0-1.0+c\right|}{\sqrt{3^2+\left(-1\right)^2}}=2\Leftrightarrow\left|c\right|=2\sqrt{10}\Rightarrow c=\pm2\sqrt{10}\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}3x-y+2\sqrt{10}=0\\3x-y-2\sqrt{10}=0\end{matrix}\right.\)
b/ d' vuông góc d nên pt có dạng \(2x-y+c=0\)
\(d\left(O;d'\right)=R\Leftrightarrow\frac{\left|2.0-1.0+c\right|}{\sqrt{2^2+1^2}}=2\Rightarrow\left|c\right|=2\sqrt{5}\Rightarrow c=\pm2\sqrt{5}\)
Có 2 tiếp tuyến t/m: \(\left[{}\begin{matrix}2x-y+2\sqrt{5}=0\\2x-y-2\sqrt{5}=0\end{matrix}\right.\)
c/ Tiếp tuyến d' qua M nên pt có dạng:
\(a\left(x-2\right)+b\left(y+2\right)=0\Leftrightarrow ax+by-2a+2b=0\)
\(d\left(O;d'\right)=R\Leftrightarrow\frac{\left|0.a+0.b-2a+2b\right|}{\sqrt{a^2+b^2}}=2\)
\(\Leftrightarrow\left|a-b\right|=\sqrt{a^2+b^2}\)
\(\Leftrightarrow a^2-2ab+b^2=a^2+b^2\)
\(\Leftrightarrow2ab=0\Rightarrow\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn: \(\left[{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\)
Chắc bạn viết sai đề, chưa bao giờ thấy đường tròn nào có pt bậc 4 như vậy cả
Pt đường tròn có dạng kiểu như \(x^2+y^2=4\)
Còn pt \(x^4+y^4=4\) nó có đồ thị như vầy:
Nhìn có "tròn" chút nào đâu? :D