K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2016

cạn lời 

5 tháng 11 2016

thi phaii tim d a c h c dng nua chu

Gọi vận tốc dự định là x

Thời gian dự định là 90/x

Thời gian thực tế là 30/x+60/x-10

Theo đề ta có: 30/x+60/x-10-90/x=3/10

=>60/x-10-60/x=3/10

=>20/x-10-20/x=1/10

=>\(\dfrac{20x-20x+200}{x\left(x-10\right)}=\dfrac{1}{10}\)

=>x^2-10x-2000=0

=>x=50

4 tháng 4 2017

Gọi vận tốc của xuồng lúc đi là x (km/h), x > 0, thì vân tốc lúc về là x - 5 (km/h).

Vì khi đi có nghỉ 1 giờ nên thời gian khi đi hết tất cả là: + 1 (giờ)

Đường về dài: 120 + 5 = 125 (km)

Thời gian về là: (giờ)

Theo đầu bài có phương trình: + 1 =

Giải phương trình:

x2 – 5x + 120x – 600 = 125x ⇔ x2 – 10x – 600 = 0

∆’ = (-5)2 – 1 . (-600) = 625, √∆’ = 25

x1 = 5 – 25 = -20, x2 = 5 + 25 = 30

Vì x > 0 nên x1 = -20 không thỏa mãn điều kiện của ẩn.

Trả lời: Vận tốc của xuồng khi đi là 30 km/h



4 tháng 4 2017

Bài 43 (SGK trang 58)

Một xuồng du lịch đi từ thành phố Cà Mau đến Đất Mũi theo một đường sông dài 120 km. Trên đường đi, xuồng có nghỉ lại 1 giờ ở thị trấn Năm Căn. Khi về, xuồng đi theo đường khác dài hơn đường lúc đi 5 km và với vận tốc nhỏ hơn vận tốc lúc đi là 5 km/h. Tính vận tốc của xuồng lúc đi, biết rằng thời gian về bằng thời gian đi.

Gọi x là vận tốc lúc xuồng đi(km/h, x > 5)
thì Vận tốc lúc về sẽ là x - 5 (km/h)
Tính cả 1 giờ nghỉ ở Năm Căn thì thời gian đi từ thành phố Cà Mau đến Đất Mũi là 120x + 1 (giờ)
Quãng đường lúc về dài: 120 + 5 = 125 (km)
Thời gian đi về hết: 125x−5 (giờ)
Theo đề bài ta có phương trình:
120x + 1 = 125x−5 <=> 120(x - 5) + x(x - 5) = 125x <=> 120x - 600 + x2 - 5x - 125x = 0 <=> x2 - 10x - 600 = 0
Giải phương trình x2 - 10x - 600 = 0
Δ′ = (−5)2 - 1.(-600) = 25 + 600 = 625
√Δ′ = √625 = 25
Phương trình có hai nghiệm x1 = -(-5) + 25 = 30, x2 = -(-5) - 25 = -20
Vì x > 5 nên ta chỉ chọn giá trị x1
Vậy vận tốc xuồng lúc đi là 30 (km/h)

28 tháng 7 2018

Đáp án D

Gọi vận tốc của ô tô khi đi từ A đến B là x (km/h) (x > 0)

Thời gian ô tô đi từ A đến B là: 156/x (giờ)

Vận tốc của ô tô lúc về là: x + 32 (km) .

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Vậy vận tốc của ô tô lúc đi từ A đến B là 48km/h

29 tháng 6 2017

 Đặt AB = x => thời gian xe máy đi từ A đến B là x/30; thời gian ô tô đi bình thường từ A đến B là x/40 => Bình thường khi cả 2 xe đến B cùng lúc thì ô tô khởi hành sau xe máy một thời gian là x/30 - x/40 = x/120 (giờ) 
Gọi C là điểm mà ô tô đuổi kịp xe máy sau khi tăng tốc => Quãng đường AC ô tô đi là x/2 + 45.1 = x/2 + 45 (1) 
Thời gian ô tô đi hết quãng đường AC là x/2.40 + 1 = x/80 + 1 ( = thời gian đi hết nửa quãng đường AB với vận tốc 40km/h + 1 giờ sau khi tăng tốc thi đuổi kịp xe máy) 
Thời gian xe máy đi hết quãng đường AC là x/80 + 1 + x/120 = x/48 + 1 ( = thời gian ô tô đi hết AC + thời gian xe máy khởi hành trước ô tô là x/120 giờ) => chiiều dài quãng đường AC xe máy đi là : 30(x/48 + 1) = 15x/24 + 30 (2) 
Từ (1) và (2) có pt : x/2 + 45 = 15x/24 + 30 => x = 120 km

9 tháng 2 2019

chac chan la 120

29 tháng 7 2019

Gọi vận tốc của xuồng lúc đi là x (km/h, x > 5).

⇒ Vận tốc của xuồng lúc về là x – 5 (km/h).

Thời gian đi là: Giải bài 43 trang 58 SGK Toán 9 Tập 2 | Giải toán lớp 9 (h)

Quãng đường về là: 120 + 5 = 125 km

Thời gian về là: Giải bài 43 trang 58 SGK Toán 9 Tập 2 | Giải toán lớp 9 (h)

Theo bài ra ta có phương trình:

Giải bài 43 trang 58 SGK Toán 9 Tập 2 | Giải toán lớp 9

QUẢNG CÁO

Có a = 1; b = -10; c = -600 ⇒ Δ’ = (-5)2 – 1.(-600) = 625

Phương trình có hai nghiệm phân biệt:

Giải bài 43 trang 58 SGK Toán 9 Tập 2 | Giải toán lớp 9

Trong hai nghiệm chỉ có nghiệm x = 30 thỏa mãn điều kiện.

Vậy vận tốc xuồng lúc đi là 30 km/h.

11 tháng 12 2019

Gọi vận tốc của xuồng lúc đi là x (km/h, x > 5).

⇒ Vận tốc của xuồng lúc về là x – 5 (km/h).

Thời gian đi là: Giải bài 43 trang 58 SGK Toán 9 Tập 2 | Giải toán lớp 9 (h)

Quãng đường về là: 120 + 5 = 125 km

Thời gian về là: Giải bài 43 trang 58 SGK Toán 9 Tập 2 | Giải toán lớp 9 (h)

Theo bài ra ta có phương trình:

Giải bài 43 trang 58 SGK Toán 9 Tập 2 | Giải toán lớp 9

Có a = 1; b = -10; c = -600  ⇒   Δ ’   =   ( - 5 ) 2   –   1 . ( - 600 )   =   625

Phương trình có hai nghiệm phân biệt:

Giải bài 43 trang 58 SGK Toán 9 Tập 2 | Giải toán lớp 9

Trong hai nghiệm chỉ có nghiệm x = 30 thỏa mãn điều kiện.

Vậy vận tốc xuồng lúc đi là 30 km/h.

Kiến thức áp dụng

Để giải bài toán bằng cách lập phương trình ta làm theo các bước:

Bước 1: Lập phương trình

   + Chọn ẩn và đặt điều kiện cho ẩn

   + Biểu diễn tất cả các đại lượng khác qua ẩn vừa chọn.

   + Lập phương trình biểu thị mối quan hệ giữa các đại lượng.

Bước 2: Giải phương trình

Bước 3: Đối chiếu điều kiện rồi kết luận.

26 tháng 5 2016

Gọi vận tốc ô tô là x km/h, xe máy là y km/h ( x,y >0) 
đoạn đường BC: 2x km 
đoạn đường AC: 9y/2 km (4giờ 30' = 9/2 giờ) 
=> 2x + 9y/2 = 180 <=> 4x + 9y = 360 (1) 
thời gian ô tô đi từ A đến C là: 9y/2x giờ 
thời gian xe máy đi từ B đến C là : 2x/y giờ 
do 2 xe khỏi hành cùng lúc và gặp nhau tại C nên thời gian 2 xe đi quãng đường AC và BC sẽ bằng nhau nên ta có 
9y/2x = 2x/y <=> 9y² = 4x² => 3y = 2x => y = 2x/3 (2) 
(1) và (2) ta có hệ PT : 
{4x + 9y = 360 
{y = 2x/3 
4x + 9.2x/3 = 360 <=> 30x = 1080 => x = 1080/30 = 36 
=> y = 2.36/3 = 24 
vậy vận tốc ô tô là 36 km/h và xe máy là 24 km/h 

26 tháng 5 2016

gọi vận tốc ô tô là x km/h, xe máy là y km/h ( x,y >0) 

đoạn đường BC: 2x km 

đoạn đường AC: 9y/2 km (4giờ 30' = 9/2 giờ) 

=> 2x + 9y/2 = 180 <=> 4x + 9y = 360 (1) 

thời gian ô tô đi từ A đến C là: 9y/2x giờ 

thời gian xe máy đi từ B đến C là : 2x/y giờ 

do 2 xe khỏi hành cùng lúc và gặp nhau tại C nên: 

9y/2x = 2x/y <=> 9y^2 = 4x^2 => 3y = 2x => y = 2x/3 (2) 

(1) và (2) => 4x + 9.2x/3 = 360 <=> 10x = 360

=> x = 360/10 = 36 (km/h)

=> y = 2.36/3 = 24 (km/h)