K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
5 tháng 5 2024

Do số đó chia hết cho 2 nên nó là số chẵn

Gọi số đó là \(\overline{abcd}\Rightarrow d\) chẵn

TH1: \(d=0\Rightarrow\) a có 7 cách chọn (khác 0), b có 6 cách (khác a;d), c có 5 cách (khác a;b;d)

\(\Rightarrow7.6.5=210\) số

TH2: \(d\ne0\Rightarrow d\) có 3 cách chọn (từ 2,4,6)

a có 6 cách chọn (khác 0 và d), b có 6 cách (khác a,d), c có 5 cách (khác a,b,d)

\(\Rightarrow3.6.6.5=540\) số

Vậy có \(210+540=750\) số thỏa mãn

5 tháng 5 2024

Giúp em với thầy 

 

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

Các số tự nhiên nhỏ hơn 1000 gồm các số có 1 chữ số, có 2 chữ số hoặc 3 chữ số.

+ Số có 1 chữ số chia hết cho 5 là: 0 và 5 => có 2 số.

+ Số có 2 chữ số chia hết cho 5:

Hàng đơn vị là 0: chữ số hàng chục có 9 cách chọn.

Hàng đơn vị là 5: chữ số hàng chục có 8 cách chọn (khác 0).

=> Có \(9 + 8 = 17\) (số)

+ Số có 3 chữ số chia hết cho 5:

Hàng đơn vị là 0: chữ số hàng trăm có 9 cách chọn, hàng chục có 8 cách chọn.

Hàng đơn vị là 5: chữ số hàng trăm có 8 cách chọn, hàng chục có 8 cách chọn.

=> Có 9.8+8.8 = 136 (số)

Vậy có tất cả \(2 + 17 + 136 = 155\) số thỏa mãn ycbt.

\(\overline{abcde}\)

TH1: e=0

e có 1 cách chọn

Chữ số 2 có 4 cách chọn

ba chỗ còn lại có 4*3*2=24 cách

=>Có 4*24=96 cách

TH2: e=5; a=2

a,e có 1 cach

b có 4 cách

c có 3 cách

dcó 2 cách

=>Có 4*3*2=24 cách

TH3: e=5; a<>2

e có 1 cách chọn

a có 3 cách chon

số 2 có 3 cách

hai số còn lại có 3*2=6 cách

=>Có 3*3*6=54 cách

=>CÓ 96+24+54=174 số

13 tháng 5 2023

 Gọi các số thỏa ycbt là \(\overline{abcd}\).

 Xét trường hợp \(a\le3\). Do \(d\) là số lẻ nên \(d\in\left\{1;3;5;7\right\}\) (4 cách)

 Với mỗi cách chọn d, a có 6 cách chọn, b có 6 cách chọn và c có 5 cách chọn. Suy ra có \(4.6.6.5=720\) số

 Xét trường hợp \(a=4\). Nếu \(b=0\) thì c có 6 cách chọn. Nếu c lẻ (4 cách chọn) thì d có 3 cách chọn \(\Rightarrow\) Có \(4.3=12\) số. Nếu c chẵn (2 cách chọn) thì d có 4 cách chọn \(\Rightarrow\) Có \(2.4=8\) số. Do đó, có tất cả \(12+8=20\) số dạng \(\overline{40cd}\) thỏa ycbt.

 Nếu \(b=1\) thì c có 4 cách chọn. Nếu \(c=3\) thì \(d\in\left\{5;7\right\}\) (có 2 số). Nếu c chẵn (3 cách) thì d có 3 cách. \(\Rightarrow\) Có \(3.3=9\) số. Vậy có tất cả \(2+9=11\) số dạng \(\overline{41cd}\) thỏa ycbt.

 Vậy có \(20+11=31\) số dạng \(\overline{4bcd}\) thỏa ycbt. Do đó, có tất cả \(720+31=751\) số thỏa ycbt.

Gọi số cần tìm là \(\overline{abcdef}\)

TH1: 0,1,2 là 3 số cuối

=>\(\overline{abc012};\overline{abc210}\)

a có 6 cách

b có 5 cách

c có 4 cách

=>CÓ 6*5*4*2=240 cách

TH2: \(\overline{ab\left\{0,1,2\right\}f}\)

0,1,2 có 3!=6 cách

a có 5 cách

b có 4 cách

f có 3 cách

=>Có 360 cách

TH3: \(\overline{a\left\{0,1,2\right\}ef}\)

0,1,2 có 3!=6 cách

f có 2 cách

e có 5 cách

a có 4 cách

=>Có 6*3*5*4=360 cách

TH4: \(\overline{\left\{0,1,2\right\}def}\)

{0;1;2} có 4 cách

f có 3 cách

d có 5 cách

e có 4 cách

=>Có 4*3*5*4=240 cách

=>Có 120+120+360+360+240=1200 cách

7 tháng 5 2023

TH1 (012)def : chọn a từ (1,2) có 2 cách

chọn b từ (012)/(a) có 2 cách

chọn c từ (012)/(ab) có 1 cách

chọn f chẵn từ (4,6) có 2 cách

với d và e chọn 2 số từ 4 số còn lại và xếp nên có 4A2 cách

vậy có  2.2.1.4A2.2 số

TH2 a(012)ef 

xếp chỗ cho 3 số (012) có 3! cách

chọn f từ (4,6) có 2 cách 

chọn ae từ 4 số còn lại và xếp có 4A2 cách

 vậy có 3!.2.4A2 số 

TH3  ab(012)f

tương tự TH2

TH4 : abc(012):

chọn f chẵn từ (0,2)  có 2 cách

chọn e từ (012)/(a) có 2 cách

chọn d từ (012)/(ab) có 1 cách

với abc chọn 3 số từ 5 số còn lại và xếp nên có 5A3 cách

vậy có 2.2.1.5A3 số 

tổng 4 TH ta có 

2.2.1.4A2.2+3!.2.4A2+3!.2.4A2+2.2.1.5A3=624 số

 

 

HQ
Hà Quang Minh
Giáo viên
1 tháng 10 2023

a)     Số có ba chữ số khác nhau có thể lập được là: 6.5.4 = 120 (số)

b)    Số chia hết cho 3 nên tổng 3 chữ số chia hết cho 3, có các cặp số là: (1,2,3), (1,2,6), (2,3,4), (3,4,5), (4,5,6), (1,5,6), (1,3,5), (2,4,6).

Số có ba chữ số khác nhau và chia hết cho 3 có thể lập được là:

       8. 3! = 48 (số)

Các bộ số có thể là (0;3;6); (0;1;5); (0;4;8); (0;1;8); (0;4;5); (1;3;5); (1;3;8); (1;5;6); (3;4;5); (3;4;8); (4;6;8)

Với các bộ (0;3;6); (0;1;5); (0;4;8); (0;1;8); (0;4;5) thì có thể lập được:

\(2\cdot2\cdot1\cdot5=20\left(số\right)\)

Với các bộ còn lại thì lập được 3!*6=6*6=36 số

=>Có 20+36=56 số

HQ
Hà Quang Minh
Giáo viên
27 tháng 9 2023

Việc lập số tự nhiên gồm ba chữ số chia hết cho 5 là thực hiện 3 hành động liên tiếp: chọn chữ số hàng đơn vị, chọn chữ số hàng chục, chọn chữ số hàng trăm.

chọn chữ số hàng đơn vị: Có 1 cách chọn (số 5).

chọn chữ số hàng chục: Có 6 cách chọn.

chọn chữ số hàng trăm: Có 6 cách chọn.

Theo quy tắc nhân, số số tự nhiên lập được là: 1.6.6=36 (số).

7 tháng 5 2023

14 tháng 12 2023

TH1: Hàng đơn vị là 0

=> Số cách chọn chữ số hàng chục nghìn, nghìn, trăm, chục: 8 x 7 x 6 x 5 = 1680 (cách)

TH2: Hàng đơn vị là 5

=> Số cách chọn chữ số hàng chục nghìn, nghìn, trăm, chục: 7 x 7 x 6 x 5 = 1470 (cách)

Số lượng số tự nhiên có 5 chữ số được lập bởi các số 0,1,2,3,4,5,6,7,8 và chia hết cho 5 là: 1680 + 1470 = 3150 (số)

Đáp số: 3150 số thoả mãn