Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{N_Y\left(t\right)}{N_X\left(t\right)}=\frac{N-N\left(t\right)}{N\left(t\right)}=\frac{N_0\left(1-2^{-\frac{t}{T}}\right)}{N_02^{-\frac{t}{T}}}=k.\)
=> \(1-X=kX\Rightarrow X=\frac{1}{1+k}.\) (đặt \(X=2^{-\frac{t}{T}}\))
\(\frac{N_{Y1}}{N_{X1}}=\frac{N_0\left(1-2^{-\frac{\left(t-2T\right)}{T}}\right)}{N_02^{-\frac{\left(t-2T\right)}{T}}}=\frac{1-2^{\frac{-t+2T}{T}}}{2^{\frac{-t+2T}{T}}}=\frac{1-4.2^{-\frac{t}{T}}}{4.2^{-\frac{t}{T}}}=\frac{1-4X}{4X}=\frac{k-3}{4}.\)
chọn đáp án.A
Vật bị nhiễm điện có khả năng hút hoặc đẩy các vật khác
ví dụ: dùng miếng vải khô cọ xát vào thước nhựa, sau đó đưa đầu thước nhựa lại gần các vụn giấy thì ta thấy đầu thước nhựa hút các vụt giấy
Bạn áp dụng CT của dao động điều hòa:
\(A^2=x^2+\dfrac{v^2}{\omega^2}\)
Với \(x=\alpha.\ell\), li độ là độ dài cung của góc \(\alpha\) (tính theo rad)
\(\Rightarrow (\alpha_0.\ell)^2=(\alpha.\ell)^2+\dfrac{v^2.\ell}{g}\)
\(\Rightarrow \alpha_0^2=\alpha^2+\dfrac{v^2}{g\ell}\)
Chọn đáp án A.
Do \(\alpha_0=8^0\) nên đây là dao động điều hòa, ta tính toán giống như một dao động điều hòa thôi.
Tại vị trí \(W_đ=W_t\)
\(\Rightarrow W=W_đ+W_t=2W_đ\)
\(\Rightarrow v_{max}^2=2.v^2\)
\(\Rightarrow v=\dfrac{v_{max}}{\sqrt 2}=\dfrac{\omega.A}{\sqrt 2}\)
\(\Rightarrow v=\dfrac{\sqrt{\dfrac{g}{\ell}}.\alpha_0.\ell}{\sqrt 2}=\dfrac{\alpha_0.\sqrt{g.\ell}}{\sqrt 2}\)
\(\Rightarrow v=\dfrac{\dfrac{8.\pi}{180}.\sqrt{10.1}}{\sqrt 2}\approx0,31(m/s)\)
Thiếu m hoặc \(\omega\),
Hướng dẫn: Từ \(F_{dh}\le1,5\) suy ra miền giá trị của li độ \(x\), từ đó tìm ra thời gian bạn nhé.
\(F_{đh}=-k.x\Rightarrow x=\dfrac{F}{k}\)
Bảo toàn cơ năng ta có:
\(\dfrac{1}{2}mv_1^2+\dfrac{1}{2}k.x_1^2=\dfrac{1}{2}mv_2^2\) (lúc sau, lực đàn hồi = 0 thì x = 0 -> thế năng bằng 0)
\(\Rightarrow mv_1^2+k.(\dfrac{F_1}{k})^2=mv_2^2\)
Chọn C nhé bạn
\(\Rightarrow v_2^2 = v_1^2+\dfrac{F_1^2}{k.m}\)