K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Phương trình hoành độ giao điểm là:

\(\dfrac{1}{2}x^2-\left(m+1\right)x-m+3=0\)

\(\Leftrightarrow x^2-\left(2m+2\right)x-2m+6=0\)

\(\text{Δ}=\left(2m+2\right)^2-4\left(-2m+6\right)\)

\(=4m^2+8m+4+8m-24\)

\(=4m^2+16m-20\)

\(=4\left(m^2+4m-5\right)\)

\(=4\left(m+5\right)\left(m-1\right)\)

a: Để (P) không cắt (d) thì (m+5)(m-1)<0

hay -5<m<1

b: Để (P) cắt (d) tại hai điểm phân biệt thì (m+5)(m-1)>0

=>m>1 hoặc m<-5

c: Để (P) tiếp xúc với (d) thi (m+5)(m-1)=0

=>m=-5 hoặc m=1

b: Thay m=2 vào (d), ta được:

y=2x-2+1=2x-1

Phương trình hoành độ giao điểm là:

\(x^2=2x-1\)

=>\(x^2-2x+1=0\)

=>(x-1)^2=0

=>x-1=0

=>x=1

Thay x=1 vào (P), ta được:

\(y=1^2=1\)

Vậy: Khi m=2 thì (P) cắt (d) tại A(1;1)

b: Phương trình hoành độ giao điểm là:

\(x^2=2x-m+1\)

=>\(x^2-2x+m-1=0\)

\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(m-1\right)\)

=4-4m+4

=-4m+8

Để (P) cắt (d) tại hai điểm phân biệt thì Δ>0

=>-4m+8>0

=>-4m>-8

=>m<2

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)

y1,y2 thỏa mãn gì vậy bạn?

NV
30 tháng 3 2023

a. Em tự giải

b.

Phương trình hoành độ giao điểm (d) và (P):

\(x^2=\left(m+2\right)x-m+3\Leftrightarrow x^2-\left(m+2\right)x+m-3=0\)

\(\Delta=\left(m+2\right)^2-4\left(m-3\right)=m^2+16>0;\forall m\)

(d) cắt (P) tại 2 điểm phân biệt với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=m-3\end{matrix}\right.\)

\(x_1^2+x_2^2+x_1x_2\le5\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2\le5\)

\(\Leftrightarrow\left(m+2\right)^2-\left(m-3\right)\le5\)

\(\Leftrightarrow m^2+3m+2\le0\)

\(\Leftrightarrow\left(m+1\right)\left(m+2\right)\le0\)

\(\Rightarrow-2\le m\le-1\)

a: khi m=3 thì (d): y=5x

PTHĐGĐ là:

x^2=5x

=>x=0 hoặc x=5

=>y=0 hoặc y=25

b:

PTHĐGĐ là:

x^2-(m+2)x+m+3=0

Δ=(m+2)^2-4(m+3)

=m^2+4m+4-4m-12=m^2-8

Để (d) cắt (P) tại 2 điểm pb thì m^2-8>0

=>m>2 căn 2 hoặc m<-2 căn 2

x1^2+x2^2+x1x2<=5

=>(x1+x2)^2-x1x2<=5

=>(m+2)^2-m-3<=5

=>m^2+4m+4-m-3-5<=0

=>m^2+3m-4<=0

=>(m+4)(m-1)<=0

=>-4<=m<=1

NV
26 tháng 3 2022

Phương trình hoành độ giao điểm:

\(-\dfrac{1}{2}x^2=mx+m-3\Leftrightarrow x^2+2mx+2m-6=0\) (1)

a. Khi \(m=-1\), (1) trở thành:

\(x^2-2x-8=0\Rightarrow\left[{}\begin{matrix}x=4\Rightarrow y=-8\\x=-2\Rightarrow y=-2\end{matrix}\right.\)

Vậy (d) cắt (P) tại 2 điểm có tọa độ là \(\left(4;-8\right)\) ; \(\left(-2;-2\right)\)

b. 

\(\Delta'=m^2-2m+6=\left(m+1\right)^2+5>0;\forall m\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m

Hay (d) cắt (P) tại 2 điểm pb với mọi m

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)

\(x_1^2+x_2^2=14\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=14\)

\(\Leftrightarrow4m^2-2\left(2m-6\right)=14\)

\(\Leftrightarrow4m^2-4m-2=0\Rightarrow m=\dfrac{1\pm\sqrt{3}}{2}\)

17 tháng 5 2021

đơn giản vl

a: Thay x=-1 và y=3 vào (d), ta được:

-2-m+1=3

=>-1-m=3

=>m=-4

b: PTHĐGĐ là;

1/2x^2-2x+m-1=0

=>x^2-4x+2m-2=0

Δ=(-4)^2-4(2m-2)

=16-8m+8=-8m+24

Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0

=>m<3

x1x2(y1+y2)+48=0

=>x1x2(x1^2+x2^2)+48=0

=>(2m-2)[4^2-2(2m-2)]+48=0

=>(2m-2)(16-4m+4)+48=0

=>(2m-2)*(20-4m)+48=0

=>40m-8m^2-40+8m+48=0

=>-8m^2+48m+8=0

=>m=3+căn 10 hoặc m=3-căn 10

10 tháng 4 2022

a) Lập phương trình hoành độ giao điểm: 

x2 = mx + 3

<=> x2 - mx - 3 = 0

Tọa độ (P) và (d) khi m = 2:

<=> x2 - 2x - 3 = 0

<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)

Tọa độ (P) và (d): A(3; 9) và B(-1; 1)

b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)

<=> (-m)2 - 4.1(-3) > 0

<=> m2 + 12 > 0 \(\forall m\)

Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)

<=> 2x2 + 2x1 = 3x1x2 

<=> 2(x2 + x1) = 3x1x2

Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)

<=> 2m = 3(-3)

<=> 2m = -9

<=> m = -9/2

26 tháng 4 2020

a) PT hoành dộ giao điểm d và (P):

x2-mx-m-1=0 (1). \(\Delta=\left(m+2\right)^2\)

d tiếp xúc với (P) <=> m=-2 tìm được x=-1

Tọa độ điểm A(-1;1)

b) Chỉ ra (1) luôn có nghiệm x=-1; x=m+1

Điều kiện để 2 giao điểm khác phía trục tung là:m >-1

Th1: với \(\hept{\begin{cases}x_1=-1\\x_2=m+1\end{cases}}\)tìm được m=\(\frac{-10}{3}\)(loại)

Th2: Với \(\hept{\begin{cases}x_1=m+1\\x_2=-1\end{cases}}\)tìm được m=0(tm)

a: Phương trình hoành độ giao điểm là:

\(x^2=2mx+2m+8\)

=>\(x^2-2mx-2m-8=0\)(1)

Thay m=-4 vào (1), ta được:

\(x^2-2\cdot\left(-4\right)\cdot x-2\cdot\left(-4\right)-8=0\)

=>\(x^2+8x=0\)

=>x(x+8)=0

=>\(\left[{}\begin{matrix}x=0\\x=-8\end{matrix}\right.\)

Thay x=0 vào (P), ta được:

\(y=0^2=0\)

Thay x=-8 vào (P), ta được:

\(y=x^2=\left(-8\right)^2=64\)

Vậy: (P) và (d) cắt nhau tại O(0;0) và A(-8;64)

b: \(\text{Δ}=\left(-2m\right)^2-4\cdot1\cdot\left(-2m-8\right)\)

\(=4m^2+8m+32\)

\(=4m^2+8m+4+28=\left(2m+2\right)^2+28>=28>0\forall m\)

=>Phương trình (1)luôn có hai nghiệm phân biệt

=>(P) luôn cắt (d) tại hai điểm phân biệt

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2m\\x_1\cdot x_2=\dfrac{c}{a}=-2m-8\end{matrix}\right.\)

mà \(x_1+2x_2=2\) nên ta có hệ phương trình:

\(\left\{{}\begin{matrix}x_1+2x_2=2\\x_1+x_2=2m\\x_1\cdot x_2=-2m-8\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x_2=2-2m\\x_1=2m-2+2m=4m-2\\x_1\cdot x_2=-2m-8\end{matrix}\right.\)

=>(2-2m)(4m-2)=-2m-8

=>\(8m-4-8m^2+4m=-2m-8\)

=>\(-8m^2+12m-4+2m+8=0\)

=>\(-8m^2+14m+4=0\)

=>\(-8m^2+16m-2m+4=0\)

=>-8m(m-2)-2(m-2)=0

=>(m-2)(-8m-2)=0

=>\(\left[{}\begin{matrix}m=2\\m=-\dfrac{1}{4}\end{matrix}\right.\)

NV
22 tháng 1 2024

a. Em tự giải

b,

Phương trình hoành độ giao điểm (d) và (P):

\(x^2=2mx+2m+8\Leftrightarrow x^2-2mx-2m-8=0\) (1)

\(\Delta'=m^2+2m+8=\left(m+1\right)^2+7>0;\forall m\)

\(\Rightarrow\left(1\right)\) luôn có 2 nghiệm pb với mọi m hay (d) luôn cắt (P) tại 2 điểm pb.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=-2m-8\end{matrix}\right.\)

Kết hợp hệ thức Viet và đề bài ta được:

\(\left\{{}\begin{matrix}x_1+2x_2=2\\x_1+x_2=2m\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_2=-2m+2\\x_1=4m-2\\\end{matrix}\right.\)

Thế vào \(x_1x_2=-2m-8\)

\(\Rightarrow\left(4m-2\right)\left(-2m+2\right)=-2m-8\)

\(\Leftrightarrow8m^2-14m-4=0\)

\(\Rightarrow\left[{}\begin{matrix}m=2\\m=-\dfrac{1}{4}\end{matrix}\right.\)