\(\left(x-2016\right)^2+\left(y+2017\right)^2=0\)là..............
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2016

vì (x-2016)2 và (y+2017)2 đều lớn hơn hoặc = 0

=> (x-2016)2 = 0

=> x = 2016

=> (y+2017)2 = 0

=> y = -2017

mik nha chế

6 tháng 11 2016

( x - 2016 )2 + ( y + 2017 )2 = 0

=> ( x - 2016 )2 = 0 và ( y + 2017 )2 = 0

+) ( x - 2016 )2 = 0

=> x - 2016 = 0

=> x = 2016

+) ( y + 2017 )2 = 0

=> y + 2017 = 0

=> y = -2017

Vậy x = 2016, y = -2017

22 tháng 10 2016

\(\left|x-1\right|+\left(y+2\right)^{2016}=0\)

Ta thấy: \(\hept{\begin{cases}\left|x-1\right|\ge0\\\left(y+2\right)^{2016}\ge0\end{cases}}\)

\(\Rightarrow\left|x-1\right|+\left(y+2\right)^{2016}\ge0\)

\(\Rightarrow\hept{\begin{cases}\left|x-1\right|=0\\\left(y+2\right)^{2016}=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=1\\y=-2\end{cases}}\)

\(\Rightarrow A=2x^5-5y^3+2017=2\cdot1^5-5\cdot\left(-2\right)^3+2017=2059\)

12 tháng 11 2017

\(5x^2+5y^2+8xy-2x+2y+2=0\)

\(\Leftrightarrow\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Ta thấy \(VT\ge VP\forall x;y\) để đấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\) thay vào M :

\(M=\left(-1+1\right)^{2015}+\left(1-2\right)^{2016}+\left(-1+1\right)^{2017}=1\)

\(\left|x-1\right|+\left(y+2\right)^{2016}=0\)

=>x-1=0 và y+2=0

=>x=1 và y=-2

\(C=13\cdot1^5-3\cdot\left(-2\right)^3+2017=13+2017-3\cdot\left(-8\right)=2030+24=2054\)

Ta có : \(4x^2+2y^2+2z^2-4xy-4zx+2yz-6y-10z+34=0\)

\(\Rightarrow\left(4x^2+y^2+z^2-4xy-4zx+2yz\right)+\left(y^2-6y+9\right)+\left(z^2-10z+25\right)=0\)

\(\Rightarrow\left(2x-y-z\right)^2+\left(y-3\right)^2+\left(z-5\right)^2=0\)

Vì \(\hept{\begin{cases}\left(2x-y-z\right)^2\ge0\forall x,y,z\\\left(y-3\right)^2\ge0\forall y\\\left(z-5\right)^2\ge0\forall z\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(2x-y-z\right)^2=0\\\left(y-3\right)^2=0\\\left(z-5\right)^2=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2x-y-z=0\\y-3=0\\z-5=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2x-3-5=0\\y=3\\z=5\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2x=8\\y=3\\z=5\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=4\\y=3\\z=5\end{cases}}\left(1\right)\)

Lại có : \(S=\left(x-4\right)^{2017}+\left(y-4\right)^{2017}+\left(z-4\right)^{2017}\)

Thay \(\left(1\right)\)vào \(S\),ta được :

\(S=0^{2017}+\left(-1\right)^{2017}+1^{2017}\)

    \(=0-1+1=0\)

Vậy \(S=0\)

12 tháng 11 2021

ta có: x2+y2+xy+3x-3y+9=0

=> 2(x2+y2+xy+3x-3y+9)=0.2

=>2x2+2y2+2xy+6x-6y+18=0

<=>(x2+xy+y2)+(x2+6x+9)+(y2-6x+9)=0

<=>(x+y)2+(x+3)2+(y-3)2=0

=> (x+y)2=(x+3)2=(y-3)2=0

=> x= -3,y=3

thay vào A ta có:

A=(-3+3+1)2017+(-3+2)2018

A=12017+(-1)2019

A=1-1

A=0

 

 

21 tháng 12 2019

mk ko vt lại đề 

=> (4x^2+8xy+4y^2)+(x^2-2x+1)+(y^2+2y+1)=0

=>(2x+2y)^2+(x-1)^2+(y+1)^2=0

...... phần này bn tự làm đc

=>x=1,y=-1

thay vào là dc

21 tháng 12 2019

Ta có : \(5x^2+5y^2+8xy-2x+2y+2=0\)

=> \(\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2-2y+1\right)=0\)

=> \(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

Ta có \(\left(2x+2y\right)^2\ge0\forall x,y\)   ,   \(\left(x-1\right)^2\ge0\forall x\)   ,   \(\left(y+1\right)^2\ge0\forall x\)

=> \(4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2\ge0\forall x,y\)

=> \(\hept{\begin{cases}x+y=0\\x-1=0\\y+1=0\end{cases}\Rightarrow\hept{\begin{cases}x+y=0\\x=1\\y=-1\end{cases}}}\)

Thay vào M ta có:

\(M=0^{2016}+\left(1-2\right)^{2018}+\left(-1+1\right)^{2019}=1\)