Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sqrt{5}-\sqrt{2}=\frac{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}+\sqrt{2}\right)}=\frac{5-2}{\sqrt{5}+\sqrt{2}}=\frac{3}{\sqrt{5}+\sqrt{2}}\)
Như vậy phát biểu a là sai
b) 693 chia hết cho 3 vài tổng các chữ số của nó là 6 + 9 + 3 = 18 chia hết cho 3, như vậy b đúng
c) \(3-\sqrt{12}< 3-\sqrt{9}=0\) vậy biểu thức \(\sqrt{3-\sqrt{12}}\) là không có nghĩa, c sai
d) Phương trình có biểu thức x -3 dưới mẫu nên để phương trình có nghĩa thì \(x\ne3\), vậy x = 3 không phải là nghiệm => d sai.
\(n^2\left(n^4-1\right)=n^2\left(n^2+1\right)\left(n^2-1\right)=\left(n-1\right).n.\left(n+1\right).\left(n^2+1\right)\)
\(=\left(n-1\right).n.\left(n+1\right).\left(n^2-4+5\right)\)
\(=\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\left(n+2\right)+5\left(n-1\right).n.\left(n+1\right)\)
Vì \(\left(n-2\right).\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\) là tích của 5 số tự nhiên liên tiếp nên chia hết cho 3,4,5 mà (3,4,5) = 1
Suy ra tích này chia hết cho 3x4x5 = 60 (1)
Mặt khác suy luận tương tự ta cũng suy ra được 5(n-1).n.(n+1) chia hết cho 60 (2)
Từ (1) và (2) suy ra đpcm
Cho hình thoi ABCD có cạnh là a. Gọi r1 và r2 laf bán kính các đường tròn ngoại tiếp tam giác ABC và ABD.
cmr: \(a.\frac{1}{r^2_1}+\frac{1}{r_2^2}=\frac{4}{a^2}\)
\(b.S_{ABCD}=\frac{8r_1^3r_2^3}{\left(r_1^2+r_2^2\right)^2}\)
an=a2
ho
a1=a2=1;an=a2n−1+2an−2
C/m annguyên với mọi n
(Lúc trc mik ghi sai đề thông cảm nha các bạn h mik ghi đúng rồi các bạn giúp mình với)
Được cập nhật 25/07 lúc 08:54
Câu hỏi tương tự Đọc thêm Báo cáoGửi câu trả lời của bạn
Chưa có ai trả lời c n−1+2an−2
Ta có: n^2 + n + 2 = n(n+1) + 2.
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6.
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8.
Mà: 2; 4; 8 không chia hết cho 5.
Nên: n(n+1)+2 không chia hết cho 5.
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N.
Ta có: n^2 + n + 2 = n﴾n+1﴿ + 2.
n﴾n+1﴿ là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6.
Suy ra: n﴾n+1﴿+2 có chữ số tận cùng là 2; 4; 8.
Mà: 2; 4; 8 không chia hết cho 5.
Nên: n﴾n+1﴿+2 không chia hết cho 5.
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N.