Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Ta có :
Lấy điểm M ( x 0 ; y 0 ) ∈ C .
+ Phương trình tiếp tuyến tại điểm M là:
+ Giao với trục hoành:
+ Giao với trục tung:
- Ta có:
- Theo giả thiết tam giác OAB có diện tích bằng 2 nên:
Chọn D
Ta có:
- Lấy điểm M(x0;y0) ∈ (C).
- Phương trình tiếp tuyến tại điểm M là:
+ Giao với trục hoành:
+ Giao với trục tung:
- Ta có:
- Theo giả thiết tam giác OAB có diện tích bằng 2 nên:
\(y'=\dfrac{-4}{\left(x-1\right)^2}\)
a) \(y'=-1\Rightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)
pt tiếp tuyến : \(\left[{}\begin{matrix}y=-\left(x-3\right)+4=-x+7\\y=-\left(x+1\right)=-x-1\end{matrix}\right.\)
b) \(k=\pm1\)
\(y'< 0\forall x\Rightarrow y'=-1\)
làm như trên
c) hoành độ tiếp điểm \(x=\pm2\)
TH x = 2
\(k=-4\)
pt tiếp tuyến : \(y=-4\left(x-2\right)+6=-4x+14\)
TH x = -2
\(k=-\dfrac{4}{9}\)
pt tiếp tuyến : \(y=-\dfrac{4}{9}\left(x+2\right)+\dfrac{2}{3}=-\dfrac{4}{9}x-\dfrac{2}{9}\)
- Hàm số đã cho xác định với ∀x ≠ 1.
- Ta có:
- Gọi M ( x 0 ; y 0 ) là tọa độ tiếp điểm, suy ra phương trình tiếp tuyến của (C):
- Tiếp tuyến tạo với 2 trục tọa độ lập thành một tam giác cân nên hệ số góc của tiếp tuyến bằng ± 1. Mặt khác: y ' ( x 0 ) < 0 , nên có: y ' ( x 0 ) = - 1 .
- Vậy, có 2 tiếp tuyến thỏa mãn đề bài: y = -x - 1; y = -x + 7.
Chọn D
Tham khảo:
Phương trình tiếp tuyến tại M(x0; y0)M(x0; y0) là
Suy ra diện tích tam giác OAB là
\(y'=\frac{-1}{\left(x-1\right)^2}\), gọi \(M\left(a;\frac{1}{a-1}\right)\)
Phương trình tiếp tuyến d qua M:
\(y=\frac{-1}{\left(a-1\right)^2}\left(x-a\right)+\frac{1}{a-1}\)
Gọi giao điểm của d với Ox và Oy lần lượt là A và B \(\Rightarrow\left\{{}\begin{matrix}A\left(2a-1;0\right)\\B\left(0;\frac{2a}{\left(a-1\right)^2}\right)\end{matrix}\right.\)
Do \(S_{OAB}=2\Rightarrow\frac{1}{2}OA.OB=2\Rightarrow OA.OB=4\)
\(\Rightarrow\left|\left(2a-1\right)\frac{2a}{\left(a-1\right)^2}\right|=4\Rightarrow\left\{{}\begin{matrix}\frac{2a\left(2a-1\right)}{\left(a-1\right)^2}=4\\\frac{2a\left(2a-1\right)}{\left(a-1\right)^2}=-4\end{matrix}\right.\) \(\Rightarrow a=\frac{2}{3}\)
\(\Rightarrow M\left(\frac{2}{3};-3\right)\)