Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(\frac{3\cdot4\cdot7}{12\cdot8\cdot9}\)= \(\frac{3\cdot4\cdot7}{3\cdot4\cdot8\cdot9}\)= \(\frac{7}{72}\)
b. \(\frac{4\cdot5\cdot6}{12\cdot10\cdot8}\)= \(\frac{4\cdot5\cdot2\cdot3}{3\cdot4\cdot5\cdot2\cdot8}\)= \(\frac{1}{8}\)
c.\(\frac{5\cdot6\cdot7}{12\cdot14\cdot15}\)= \(\frac{5\cdot6\cdot7}{2\cdot6\cdot2\cdot7\cdot3\cdot5}\)= \(\frac{1}{12}\)
a, \(\frac{3.4.7}{12.8.9}\)= \(\frac{3.4.7}{3.4.8.9}\)= \(\frac{7}{72}\)
b, \(\frac{4.5.6}{12.10.8}\)= \(\frac{4.5.6}{3.4.2.5.8}\)= \(\frac{1}{8}\)
c, \(\frac{5.6.7}{12.14.15}\)= \(\frac{5.6.7}{2.6.2.7.3.5}\)= \(\frac{1}{12}\)
\(A=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)
\(A=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\\ \)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)
\(=\frac{1}{2}-\frac{1}{8}\)
\(=\frac{4}{8}-\frac{1}{8}\\ =\frac{3}{8}\)
Chúc bn học thiệt giỏi nhé!
12/5 -4/5 =8/5
11/6 -2/3 =21/18 =7/6
7/8 -2/7 =33/56
4 -8/5 =20/5-8/5 =12/5
2 -3/8 =16/8 -3/8 =13/8
16/7 -2 =16/7 -14/7 =2/7
25/4 -3=25/4 -12/4 =13/4
câu 2 : câu 3 :
a) 8/5 a)4 - 8/5 = 20/5 - 8/5 =12/5
b) 7/6 b)2 - 3/8 =16/8 - 3/8 = 13/8
c) 35/56 c)16/7 - 2 = 16/7 - 14/7 = 2/7
d)25/4 - 3 = 25/4 - 12/4 = 13/4
\(3+\frac{2}{5}-\frac{3}{4}\times\frac{4}{5}\)
\(=3+\frac{2}{5}-\frac{3}{4}\)
\(=\frac{3\times20+2\times4-3\times5}{20}\)
\(=\frac{60+8-15}{20}\)
\(=\frac{68-15}{20}\)
\(=\frac{53}{20}\)
\(5-\frac{7}{9}+\frac{2}{3}-\frac{5}{6}:\frac{4}{9}\)
\(=5-\frac{7}{9}+\frac{2}{3}-\frac{45}{24}\)
\(=\frac{5\times72-7\times8+2\times24-45\times3}{72}\)
\(=\frac{360-56+48-135}{72}\)
\(=\frac{217}{72}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
\(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{2014.2016}=1-\frac{2}{4}+\frac{2}{4}-\frac{2}{6}+\frac{2}{6}-\frac{2}{8}+...+\frac{2}{2014}-\frac{2}{2016}\)
\(=1-\frac{2}{2016}=\frac{1007}{1008}\)