Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{1}{1^2}=1\)
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(\frac{1}{4^2}< \frac{1}{3.4}\)
...
\(\frac{1}{50^2}< \frac{1}{49.50}\)
\(\Rightarrow A< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(\Rightarrow A< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow A< 2-\frac{1}{50}< 2\)
\(\Rightarrow A< 2\)
Vậy \(A< 2\)
\(y=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(\Rightarrow2y=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(\Rightarrow2y-y=\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(\Rightarrow y=\frac{1}{2}-\frac{1}{100}=\frac{49}{100}<1\)
ta có : 2y=\(\frac{1}{2}+\frac{1}{^{2^2}}+...+\frac{1}{2^{99}}\)
=> 2y-y=\(\frac{1}{2}-\frac{1}{2^{100}}\)
y=0,5=>y<1
y=1/2^2+1/3^2.........+1/2013^2 < 1/1.2 + 1/2.3 +.....+ 1/2012.2013
ta có 1/k-1/k+1=1/k(k+1)
suy ra y<1-1/2013
\(S=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}\)
CMR: S < 2
P/s: Ko tiếp loại Spam
Ta có: \(S=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1^2}+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)
\(\Rightarrow S< 1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(\Rightarrow S< 2-\frac{1}{50}\)
Vậy S < 2
Bai 2 :
Ta co :
B = [ 2^1 + 2^2 + 2^3 + 2^4 + 2^5 = 2^6 ] + .... + [ 2^25 + 2^26 + 2^27 + 2^28 +2^29 +2^30 ]
= 2[1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 ] +.....+ 2^25[ 1 + 2 + 2^2 + 2^3 + 2^4 + 2^5 ]
= 2 . 63 +.... + 2^25 . 63
= 63 [2 + ..... + 2^25 ] chia het cho 21
Vay B chia het cho 21
Bai 1 :
Ta co :
A = 1/1 + 1/2^2 + 1/3^3 + 1/4^4 + .... + 1?50^2 < 1/1 + 1/1.2 + 1/2.3 + ..... + 1/49.50
=>1 + 1/1 - 1/2 +1/2 -1/3 + .... +1/449 - 1/50
=> 1 + 1/1 - 1/50
=> 1 + 49/50
=> 99/50 < 2
Vay 1 < 2
đặt A=1+1/1.2+1/2.3+...+1/49.50
ta có:y=1/1^2+1/2^2+...+1/50^2<A=1+1/1.2+1/2.3+...+1/49.50
mà A=1+1/1.2+1/2.3+...+1/49.50
=1+1-1/2+1/2-1/3+...+1/49-1/50
=2-1/50<2
=>y<2 (đpcm)
đặt A=1+1/1.2+1/2.3+...+1/49.50
ta có:y=1/1^2+1/2^2+...+1/50^2<A=1+1/1.2+1/2.3+...+1/49.50
mà A=1+1/1.2+1/2.3+...+1/49.50
=1+1-1/2+1/2-1/3+...+1/49-1/50
=2-1/50<2
=>y<2 (đpcm)