\(P=\frac{\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
12 tháng 10 2024

Lời giải:

** Sửa đề: Chỗ $\frac{1}{1}$ ở mẫu chuyển thành $\frac{1}{2}$

$\frac{1}{1}.99+\frac{1}{3}.97+\frac{1}{5}.95+....+\frac{1}{97}.3+\frac{1}{99}.1$

$=50+(\frac{97}{3}+1)+(\frac{95}{5}+1)+....+(\frac{3}{97}+1)+(\frac{1}{99}+1)$

$=50+\frac{100}{3}+\frac{100}{5}+...+\frac{100}{97}+\frac{100}{99}$
$=100(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99})$

\(P=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}{100(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99})}=\frac{1}{100}\)

28 tháng 5 2017

a) Đặt B = \(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)

\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)

\(=\frac{100}{1.99}+\frac{100}{3.97}+...+\frac{100}{49.51}\)

\(=100\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\right)\)

Đặt C = \(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{99.1}\)

\(=\left(\frac{1}{1.99}+\frac{1}{99.1}\right)+\left(\frac{1}{3.97}+\frac{1}{97.3}\right)+...+\left(\frac{1}{49.51}+\frac{1}{51.49}\right)\)

\(=2\cdot\frac{1}{1.99}+2\cdot\frac{1}{3.97}+...+2\cdot\frac{1}{49.51}\)

\(=2\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)\)

Thay B và C vào A 

\(\Rightarrow A=\frac{100\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}{2\left(\frac{1}{1.99}+\frac{1}{3.97}+...+\frac{1}{49.51}\right)}=\frac{100}{2}=50\)

b) Đặt E = \(\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}\)

\(=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)

\(=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+\frac{100}{100}\)

\(=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)

Thay E vào B

\(\Rightarrow B=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)}=\frac{1}{100}\)

28 tháng 5 2017

a)50

b)1/100

tk ủng hộ nha

26 tháng 9 2016

Ta xét riêng tử số:

\(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+......+\frac{1}{97}+\frac{1}{99}\)

\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+......+\left(\frac{1}{49}+\frac{1}{51}\right)\)

\(=\frac{100}{1\times99}+\frac{100}{3\times97}+\frac{100}{5\times95}+......+\frac{100}{49\times51}\)

\(=100\times\left(\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+......+\frac{1}{49\times51}\right)\)

Bây giờ xét đến mẫu số:

\(\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+......+\frac{1}{97\times3}+\frac{1}{99\times1}\)

\(=\frac{2}{1\times99}+\frac{2}{3\times97}+\frac{2}{5\times95}+......+\frac{2}{49\times51}\)

\(=2\times\left(\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+......+\frac{1}{49\times51}\right)\)

Vậy giá trị của biểu thức là: \(\frac{100}{2}=50\)

26 tháng 9 2016

thanks 

25 tháng 2 2016

Q=\(\frac{3+1+\frac{3}{5}+...+\frac{3}{99}}{\left(\frac{1}{1.99}+\frac{1}{99.1}\right)+\left(\frac{1}{3.97}+\frac{1}{97.3}\right)+...+\left(\frac{1}{49.51}+\frac{1}{51.49}\right)}\)

Q=\(\frac{\frac{3}{1}+\frac{3}{3}+\frac{3}{5}+...+\frac{3}{99}}{\frac{2}{1.99}+\frac{2}{3.97}+...+\frac{2}{49.51}}\)

Q=\(50.\frac{3\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)}{50\left(\frac{2}{1.99}+\frac{2}{3.97}+...+\frac{2}{49.51}\right)}\)

Q=\(50.3.\frac{\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}{\frac{100}{1.99}+\frac{100}{3.97}+...+\frac{100}{49.51}}\)

Q=\(150.\frac{\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}{\frac{99+1}{1.99}+\frac{97+3}{3.97}+...+\frac{51+49}{49.51}}\)

Q=150\(.\frac{\frac{1}{1}+\frac{1}{3}+...+\frac{1}{99}}{\left(\frac{1}{1}+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)}\)

Q=\(150.\frac{\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}{\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}}\)

Q=150.1

Q=150

25 tháng 2 2016

      \(Q=\frac{4+\frac{3}{5}+...+\frac{3}{95}+\frac{3}{97}+\frac{3}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{95.5}+\frac{1}{97.3}+\frac{1}{99.1}}\)

=> \(Q=\frac{100\left(\frac{3}{1}+\frac{3}{3}+\frac{3}{5}+...+\frac{3}{95}+\frac{3}{97}+\frac{3}{99}\right)}{100\left(\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{95.5}+\frac{1}{97.3}+\frac{1}{99.1}\right)}\)

=> \(Q=\frac{100.3\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{95}+\frac{1}{97}+\frac{1}{99}\right)}{\frac{1+99}{1.99}+\frac{3+97}{3.97}+\frac{5+95}{5.95}+...+\frac{95+5}{95.5}+\frac{97+3}{97.3}+\frac{99+1}{99.1}}\)

=> \(Q=\frac{300\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{95}+\frac{1}{97}+\frac{1}{99}\right)}{\left(\frac{1}{1}+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+...+\left(\frac{1}{95}+\frac{1}{5}\right)+\left(\frac{1}{97}+\frac{1}{3}\right)+\left(\frac{1}{99}+\frac{1}{1}\right)}\)

=> \(Q=\frac{300\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{95}+\frac{1}{97}+\frac{1}{99}\right)}{2\left(\frac{1}{1}+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{95}+\frac{1}{97}+\frac{1}{99}\right)}\)

=> \(Q=\frac{300}{2}=150\)

5 tháng 8 2018

\(x-\frac{37}{45}=\frac{4}{5.9}+\frac{4}{9.13}+.....+\frac{4}{41.45}\)

\(\Rightarrow x-\frac{37}{45}=\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\)

\(\Rightarrow x-\frac{37}{45}=\frac{1}{5}-\frac{1}{45}\)

\(\Rightarrow x-\frac{37}{45}=\frac{8}{45}\)

\(\Rightarrow x=\frac{37}{45}+\frac{8}{45}\)

\(\Rightarrow x=1\)

3 tháng 2 2019

Đặt \(B=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)

\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)

\(=\frac{100}{99}+\frac{100}{3\times97}+\frac{100}{5\times95}+...+\frac{100}{49\times51}\)

\(=100\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)

Đặt \(C=\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{97\times3}+\frac{1}{99\times1}\)

\(=2\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)

\(A=\frac{B}{6}=\frac{100}{2}=50\)

Vậy \(A=50\)

15 tháng 4 2019

Đặt \(B=\frac{C}{D}\)

Biến đổi D : \(D=\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}\)

                         \(=\left(99+1\right)+\left(\frac{98}{2}+1\right)+...+\left(\frac{1}{99}+1\right)-99\)

                          \(=100+\frac{100}{2}+...+\frac{100}{99}+\frac{100}{100}-100\)

                           \(=100.\left(\frac{1}{2}+...+\frac{1}{100}\right)\)

\(\Rightarrow B=\frac{\frac{1}{2}+...+\frac{1}{100}}{100.\left(\frac{1}{2}+...+\frac{1}{100}\right)}=\frac{1}{100}\)

12 tháng 3 2019

mình chỉ nói cách làm thôi đc k? phân tích 99/1 ra thành 99 số 1 sau đó lấy mõi số 1 đó cộng với 1 phân số thì tất cả đều có tử số là 100. đặt 100 ra ngoài nhân với 1/2,1/3,.... sau đó ta thấy phần trong ngoặc bằng mẫu số thì suy ra A=100

12 tháng 3 2019

cảm ơn bn ạ