\(\sqrt{49}\) . \(\sqrt{144}\) + 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tính:

a, √49 . √144√256 : √64

   =   7 . 12 + 16 : 8 

   = 84 + 2

    = 86

b, 72 :  √2^2.36.3^2√225

= 72:  2.6.3-15

= -13

13 tháng 6 2018

\(a)\) \(A=\sqrt{49}-2\sqrt{36}+3\sqrt{4}\)

\(A=7-2.6+3.2\)

\(A=7-12+6\)

\(A=1\)

\(b)\) \(B=\frac{1}{2}\sqrt{\frac{144}{225}}-7\sqrt{100}+4\sqrt{\frac{361}{400}}\)

\(B=\frac{1}{2}.\frac{4}{5}-7.10+4.\frac{19}{20}\)

\(B=\frac{2}{5}-70+\frac{19}{5}\)

\(B=\frac{-329}{5}\)

Chúc bạn học tốt ~ 

AH
Akai Haruma
Giáo viên
5 tháng 7 2019

Lời giải:
a)

\(\sqrt{144}.\sqrt{\frac{49}{69}}\sqrt{0,01}=12.\frac{7}{\sqrt{69}}.0,1=\frac{8,4}{\sqrt{69}}=\frac{42\sqrt{69}}{345}\)

b)

\(\sqrt{0,25}-\sqrt{225}+\sqrt{2,25}=\sqrt{0,5^2}-\sqrt{15^2}+\sqrt{1,5^2}\)

\(=0,5-15+1,5=-13\)

c)

\(72:\sqrt{3^3+3^2}-3\sqrt{5^2-3^2}\)

\(=\frac{72}{\sqrt{36}}-3\sqrt{16}=\frac{72}{6}-3.4=12-12=0\)

25 tháng 8 2018

\(a,\sqrt{49}.\sqrt{144}+\sqrt{256}:\sqrt{64}\\ =7.12+16:8\\ =84+2\\ =86\\ b,72:\sqrt{2^3.3^2.36}-\sqrt{225}\\ =72:\sqrt{1296}-25\\ =72:36-25\\ =2-25\\ =-23\)

14 tháng 7 2016

\(A=\sqrt{3+\sqrt{5}}.\sqrt{3-\sqrt{5}}=\sqrt{3^2-\left(\sqrt{5}\right)^2}=\sqrt{4}=2\)

\(B=\sqrt{150.27.96}=\sqrt{150}.\sqrt{27}.\sqrt{96}=5\sqrt{6}.3\sqrt{3}.4\sqrt{6}=360\sqrt{3}\)

\(C=\left(\sqrt{27}+\sqrt{48}\right)^2-\left(\sqrt{27}-\sqrt{48}\right)^2\)\(=\left[\left(\sqrt{27}+\sqrt{48}-\sqrt{27}+\sqrt{48}\right)\left(\sqrt{27}+\sqrt{48}+\sqrt{27}-\sqrt{48}\right)\right]\)

\(=2\sqrt{27}.2\sqrt{48}=2.3\sqrt{3}.2.4\sqrt{3}=144\)

\(D=\sqrt{137^2-88^2}-\sqrt{192^2-111^2}=\sqrt{\left(137+88\right)\left(137-88\right)}-\sqrt{\left(192+111\right)\left(192-111\right)}\)

\(=\sqrt{225.49}-\sqrt{303.81}=15.7-9.\sqrt{303}=9\left(\frac{35}{3}-\sqrt{303}\right)\)

14 tháng 7 2016

\(E=\sqrt{\frac{225}{4}.\frac{81}{25}.\frac{49}{64}}=\frac{15}{2}.\frac{9}{5}.\frac{7}{8}=\frac{189}{16}\)

\(F=\sqrt{\frac{27}{25}}.\sqrt{\frac{49}{189}}.\sqrt{\frac{700}{99}}=\frac{3\sqrt{3}}{5}.\frac{7}{3\sqrt{21`}}.\frac{10\sqrt{7}}{3\sqrt{11}}=\frac{14}{3\sqrt{11}}\)

\(H=\sqrt{105}.\left[\sqrt{\frac{15}{7}}-\sqrt{\frac{35}{5}}+\sqrt{\frac{21}{5}}\right]=\sqrt{105}.\left[\sqrt{\frac{15}{7}}-\sqrt{7}+\sqrt{\frac{21}{5}}\right]\)

\(=\sqrt{105}.\left[\frac{\sqrt{75}-\sqrt{49}+\sqrt{147}}{\sqrt{35}}\right]=\sqrt{3}\left(12\sqrt{3}-7\right)=36-7\sqrt{3}\)

\(K=\sqrt{64.14.21.54}-\sqrt{35.45.12}=8.\sqrt{14}.\sqrt{21}.3\sqrt{6}-\sqrt{35}.3\sqrt{5}.2\sqrt{3}\)

\(=24.\sqrt{14.21.6}-6\sqrt{35.5.3}=24.42-30\sqrt{21}=30\left(\frac{168}{5}-\sqrt{21}\right)\)

a) Ta có: \(\sqrt{45}:\sqrt{80}\)

\(=\sqrt{\frac{45}{80}}=\sqrt{\frac{9}{20}}\)

\(=\frac{3}{2\sqrt{5}}\)

b) Ta có: \(\sqrt{\frac{3}{15}}:\sqrt{\frac{36}{45}}\)

\(=\sqrt{\frac{1}{5}:\frac{4}{5}}\)

\(=\sqrt{\frac{1}{5}\cdot\frac{5}{4}}\)

\(=\sqrt{\frac{1}{4}}=\frac{1}{2}\)

c) Ta có: \(\sqrt{\frac{72}{9}}:\sqrt{8}\)

\(=\frac{\sqrt{8}}{\sqrt{8}}=1\)

d) Ta có: \(\sqrt{\frac{288}{169}}:\sqrt{\frac{8}{225}}\)

\(=\sqrt{\frac{288}{169}:\frac{8}{225}}\)

\(=\sqrt{\frac{288}{169}\cdot\frac{225}{8}}\)

\(=\sqrt{\frac{8100}{169}}=\frac{90}{13}\)

10 tháng 6 2018

\(\text{a) }\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\\ =\sqrt{5+1+2\sqrt{5}}+\sqrt{5+1-2\sqrt{5}}\\ =\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\\ =\sqrt{5}+1+\sqrt{5}-1\\ =2\sqrt{5}\)

\(\text{b) }\sqrt{5+2\sqrt{6}}+\sqrt{5-2\sqrt{6}}\\ =\sqrt{3+2+2\sqrt{6}}+\sqrt{3+2-2\sqrt{6}}\\ =\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\\ =\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}\\ =2\sqrt{3}\)

\(\text{c) }\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\\ =\sqrt{7+1-2\sqrt{7}}-\sqrt{7+1+2\sqrt{7}}\\ =\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\\ =\sqrt{7}-1-\sqrt{7}-1\\ =-2\)

\(\text{d) }\sqrt{29+12\sqrt{5}}+\sqrt{29-12\sqrt{5}}\\ =\sqrt{20+9+12\sqrt{5}}+\sqrt{20+9-12\sqrt{5}}\\ =\sqrt{\left(\sqrt{20}+3\right)^2}+\sqrt{\left(\sqrt{20}-3\right)^2}\\ =\sqrt{20}+3+\sqrt{20}-3\\ =2\sqrt{20}\\ =4\sqrt{5}\)

\(\text{e) }\left(\sqrt{0,25}-\sqrt{225}+\sqrt{2,25}\right):\sqrt{169}\\ =\left(0,5-15+1,5\right):13\\ =\left(-13\right):13=-1\)

\(\text{f) }3-\sqrt{5}+3+\sqrt{5}\\ =6\)

23 tháng 7 2018

b.\(\sqrt{2}.\sqrt{162}\)

\(=\sqrt{81}\cdot\sqrt{2^2}\)\(=9\cdot2=18\)

12 tháng 8 2019

\(\sqrt{29+12\sqrt{5}}-\sqrt{29-12\sqrt{5}}=\left(2\sqrt{5}+3\right)-\left(2\sqrt{5}-3\right)=6\)

\(\sqrt{8-2\sqrt{15}}-\sqrt{23-4\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)-\left(2\sqrt{5}-\sqrt{3}\right)=-\sqrt{5}\)

\(\sqrt{8-12\sqrt{5}}+\sqrt{48+6\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)+\left(3\sqrt{5}+\sqrt{3}\right)=4\sqrt{5}\)

\(\sqrt{49-5\sqrt{96}}+\sqrt{49+5\sqrt{96}}=\left(5-2\sqrt{6}\right)+\left(5+2\sqrt{6}\right)=10\)

\(\sqrt{15-6\sqrt{15}}+\sqrt{33-12\sqrt{6}}\) đề này sai ạ

\(\sqrt{16-6\sqrt{7}}+\sqrt{64-24\sqrt{7}}=\left(3-\sqrt{7}\right)+\left(6-2\sqrt{7}\right)=9-3\sqrt{7}\)

\(\sqrt{14-6\sqrt{5}}+\sqrt{14+6\sqrt{5}}=\left(3-\sqrt{5}\right)+\left(3+\sqrt{5}\right)=6\)

\(\sqrt{1-6\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)

\(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}=\left(2\sqrt{2}+5\right)+\left(2\sqrt{2}-5\right)=4\sqrt{2}\)

\(\sqrt{46-6\sqrt{5}}+\sqrt{29-12\sqrt{5}}=\left(3\sqrt{5}-1\right)+\left(2\sqrt{5}-3\right)=5\sqrt{5}-4\)

#Học tốt ạ

1. Áp dụng quy tắc khai phương một thương, hãy tính: a, \(\sqrt{\dfrac{36}{121}}\) b, \(\sqrt{\dfrac{9}{16}:\dfrac{25}{36}}\) c, \(\sqrt{0,0169}\) d,\(\dfrac{\sqrt{15}}{\sqrt{735}}\) e, \(\sqrt{\dfrac{81}{8}:\sqrt{3\dfrac{1}{8}}}\) g, \(\dfrac{\sqrt{12,5}}{\sqrt{0,5}}\) 2. Tính: a,\(\sqrt{\dfrac{25}{144}}\) b,\(\sqrt{2\dfrac{7}{81}}\) ...
Đọc tiếp

1. Áp dụng quy tắc khai phương một thương, hãy tính:

a, \(\sqrt{\dfrac{36}{121}}\) b, \(\sqrt{\dfrac{9}{16}:\dfrac{25}{36}}\) c, \(\sqrt{0,0169}\)

d,\(\dfrac{\sqrt{15}}{\sqrt{735}}\) e, \(\sqrt{\dfrac{81}{8}:\sqrt{3\dfrac{1}{8}}}\) g, \(\dfrac{\sqrt{12,5}}{\sqrt{0,5}}\)

2. Tính:

a,\(\sqrt{\dfrac{25}{144}}\) b,\(\sqrt{2\dfrac{7}{81}}\) c,\(\sqrt{\dfrac{2,25}{16}}\) d, \(\sqrt{\dfrac{1,21}{0,49}}\)

3. Áp dụng quy tắc chia hai căn bậc hai, hãy tính:

a, \(\sqrt{18}:\sqrt{2}\) b, \(\sqrt{45}:\sqrt{80}\)

c, (\(\sqrt{20}-\sqrt{45}+\sqrt{5}\) ) : \(\sqrt{5}\) d, \(\dfrac{\sqrt{8^2}}{\sqrt{4^5.2^3}}\)

4. Khẳng định nào sau đây là đúng?

A. \(\sqrt{\dfrac{3}{\left(-5\right)^2}}=-\dfrac{\sqrt{3}}{5}\) B. \(\left(\sqrt{\dfrac{-3}{-5}}\right)^2=\dfrac{3}{5}\)

5. Tính.

a, \(\sqrt{2\dfrac{7}{81}}:\dfrac{\sqrt{6}}{\sqrt{150}}\) b, \(\left(\sqrt{12}+\sqrt{27}-\sqrt{3}\right):\sqrt{3}\)

c, \(\left(\sqrt{\dfrac{1}{5}-\sqrt{\dfrac{9}{5}}+\sqrt{5}}\right):\sqrt{5}\) d, \(\sqrt{\dfrac{2+\sqrt{3}}{\sqrt{2}}}\)

6. So sánh

a, So sánh \(\sqrt{144-49}\)\(\sqrt{144}-\sqrt{49}\);

b, Chứng minh rằng , với hai số a,b thỏa mãn a> b> 0 thì \(\sqrt{a}-\sqrt{b}< \sqrt{a-b}\)

3
13 tháng 11 2018

1

a,\(\sqrt{\dfrac{36}{121}}=\sqrt{\dfrac{6^2}{11^2}}=\dfrac{6}{11}\)

\(\sqrt{\dfrac{9}{16}:\dfrac{25}{36}}=\sqrt{\dfrac{81}{100}}=\sqrt{\dfrac{9^2}{10^2}}=\dfrac{9}{10}\)

13 tháng 11 2018

tương tự lm nốthehe

\(a,\sqrt{\frac{72}{9}}:\sqrt{8}=\frac{\sqrt{72}}{\sqrt{9}}.\frac{1}{\sqrt{8}}\)

\(=\frac{6\sqrt{2}}{3}.\frac{1}{2\sqrt{2}}\)

\(=1\)

\(b,\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right):\sqrt{3}=\left(28\sqrt{3}+9\sqrt{3}-4\sqrt{3}\right):\sqrt{3}\)

\(=33\sqrt{3}:\sqrt{3}\)

\(=33\)

\(c,\left(\sqrt{125}+\sqrt{245}-\sqrt{5}\right):\sqrt{5}=\left(5\sqrt{5}+7\sqrt{5}-\sqrt{5}\right):\sqrt{5}\)

\(=11\sqrt{5}:\sqrt{5}\)

\(=11\)

\(d,\left(\sqrt{\frac{1}{7}}-\sqrt{\frac{16}{7}}+\sqrt{7}\right):\sqrt{7}=\left(\frac{1}{\sqrt{7}}-\frac{4}{\sqrt{7}}+\frac{7}{\sqrt{7}}\right):\sqrt{7}\)

\(=\frac{4}{\sqrt{7}}.\frac{1}{\sqrt{7}}=\frac{4}{7}\)