Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2^2=4=4.1^2
4^2=16=4.2^2
6^2=36=4.3^2
...
20^2=400=4.10^2
nên: S=2^2+4^2+6^2+...+20^2=4.(1^2+2^2+3^2+...+10^2)
=4.385
=1540
tổng S = 1540
tuy bài này không do mình giải nhưng bạn có thể yên tâm vì câu trả lời rất đúng
\(S=1+3+3^2+3^3+...+3^{2014}\)
\(3S=3+3^2+3^3+3^4+...+3^{2015}\)
\(3S-S=\left(3+3^2+3^3+3^4+...+2^{2015}\right)-\left(1+3+3^2+3^3+...+3^{2014}\right)\)
\(2S=3^{2015}-1\)
\(S=\frac{3^{2015}-1}{2}\)
giả sử số cần tìm là A , ta có
A=1+2+21+22+....+22019
2A=2+ 21+22+23+....+22020
2A-A= (2+21+22+23+....+22020) - (1+2+21+22+....+22019)
A=22020 - 2
Đăt A= 1+2+22+......+22019
2A=2(1+2+22+.....+22019)
2A=2+22+23+....+22020
2A-A=(2+22+23+.....+22020)-(1+2+22+....+22019)
A =2+22+23+....+22020-1-2-22-....-22019
A=22020-1
\(T=2019^0+2019^1+2019^2+...+2019^{2011}\)
\(\rightarrow2019T=2019\left(2019^0+2019^1+2019^2+...+2019^{2011}\right)\)
\(\rightarrow2019T=2019^1+2019^2+2019^3+...+2019^{2012}\)
\(\rightarrow2019T-T=(2019^1+2019^2+2019^3+...+2019^{2012})-\left(2019^0+2019^1+...+2019^{2011}\right)\)
\(\rightarrow2018T=2019^{2012}-2019^0=2019^{2012}-1\)
\(\rightarrow2018T+1=2019^{2012}-1+1=2019^{2012}\)
\(S=3+\frac{3}{2}+\frac{3}{2^2}+....+\frac{3}{2^9}\)
\(S\cdot\frac{1}{3}=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^9}\)
\(S\cdot\frac{2}{3}=2+1+\frac{1}{2}+...+\frac{1}{2^8}\)
\(S\cdot\frac{2}{3}-S\cdot\frac{1}{3}=2+1+\frac{1}{2}+...+\frac{1}{2^8}-1-\frac{1}{2}-...-\frac{1}{2^9}\)
\(S\cdot\frac{1}{3}=2-\frac{1}{2^9}\)
\(S=\left(2-\frac{1}{2^9}\right):\frac{1}{3}\)
\(S=\left(2-\frac{1}{2^9}\right)\cdot3\)
\(S=6-\frac{3}{2^9}\)
\(S=\frac{6\cdot2^9-3}{2^9}\)
\(2^2>1.3\); \(3^2>2.4\) ; \(n^2>\left(n-1\right)\left(n+1\right)\)
\(\Rightarrow A< \frac{1}{1.3}+\frac{1}{2.4}+\frac{1}{3.5}+...+\frac{1}{2018.2020}\)
\(A< \frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2018}-\frac{1}{2020}\right)\)
\(A< \frac{1}{2}\left(1+\frac{1}{2}-\frac{1}{2020}\right)< \frac{1}{2}\left(1+\frac{1}{2}\right)=\frac{3}{4}\)
\(\Rightarrow A< \frac{3}{4}\)
\(S=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2019}}\)
\(\Rightarrow2S=1+\frac{1}{2}+...+\frac{1}{2^{2018}}\)
\(\Rightarrow2S-S=\left(1+\frac{1}{2}+...+\frac{1}{2^{2018}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2019}}\right)\)
\(\Rightarrow S=1-\frac{1}{2^{2019}}\)
Ta có: \(S=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2019}}\)
\(\frac{1}{2}S=\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2020}}\)
\(\Rightarrow\frac{1}{2}S=S-\frac{1}{2}S=\frac{1}{2}-\frac{1}{2^{2020}}\Rightarrow S=1-\frac{1}{2^{2019}}.\)