K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 2 2020

a) \(S=\left(-\frac{1}{7}\right)^0+\left(-\frac{1}{7}\right)^1+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)

\(=1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\)

=> 7S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}\)

Lấy 7S trừ S ta có : 

7S - S = \(7+\left(-1\right)+\left(-\frac{1}{7}\right)+...+\left(-\frac{1}{7}\right)^{2006}-\left[1+\left(-\frac{1}{7}\right)+\left(-\frac{1}{7}\right)^2+...+\left(-\frac{1}{7}\right)^{2007}\right]\)

6S = \(7-1-1+\left(\frac{1}{7}\right)^{2007}=5+\left(\frac{1}{7}\right)^{2007}\Rightarrow S=\frac{5+\left(\frac{1}{7}\right)^{2007}}{6}\)

17 tháng 1 2018

fix: \(l=\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)

\(49l=1-\frac{1}{7^2}+...+\frac{1}{7^{4n-4}}-\frac{1}{7^{4n-2}}+...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\)

\(49l+l=\left(1-\frac{1}{7^2}+...+\frac{1}{7^{4n-4}}-\frac{1}{7^{4n-2}}+...+\frac{1}{7^{96}}-\frac{1}{7^{98}}\right)+\left(\frac{1}{7^2}-\frac{1}{7^4}+...+\frac{1}{7^{4n-2}}-\frac{1}{7^{4n}}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\right)\)\(50l=1-\frac{1}{7^{100}}\Leftrightarrow l=\frac{1}{50}-\frac{1}{7^{100}.50}< \frac{1}{50}\left(đpcm\right)\)

30 tháng 10 2018

Đặt :

\(A=1+7+7^2+7^3+.....+7^{100}\)

\(=1+\left(7+7^2\right)+\left(7^3+7^4\right)+.....+\left(7^{99}+7^{100}\right)\)

\(=1+7\left(1+7\right)+7^3\left(1+7\right)+....+7^{99}\left(1+7\right)\)

\(=1+7.8+7^3.8+....+7^{99}.8\)

\(=1+8\left(7+7^3+.....+7^{99}\right)\)

Nhận xét :

\(8\left(7+7^3+....+7^{99}\right)⋮8\); \(1⋮8̸\)

\(\Leftrightarrow A\) chia 8 dư 1 \(\left(đpcm\right)\)

15 tháng 4 2015

GIUP MINH LAM BAI NAY VOI

15 tháng 4 2015

Gọi A=\(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+...+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)

Nhân \(\frac{1}{7^2}\)vào A ta được

\(\frac{1}{7^2}\).A=   \(\frac{1}{7^4}-\frac{1}{7^6}+\frac{1}{7^8}-...-\frac{1}{7^{98}}+\frac{1}{7^{100}}+\frac{1}{7^{102}}\)

     A=\(\frac{1}{7^2}-\frac{1}{7^4}+\frac{1}{7^6}-\frac{1}{7^8}+....+\frac{1}{7^{98}}-\frac{1}{7^{100}}\)

Cộng \(\frac{1}{7^2}A\)+\(A\)=\(\frac{1}{49}-\frac{1}{7^{102}}\)\(\Rightarrow\frac{50}{49}A=\frac{1}{49}-\frac{1}{7^{102}}\Rightarrow A=\left(\frac{1}{49}-\frac{1}{7^{102}}\right).\frac{49}{50}\)

\(A=\frac{1}{50}-\frac{1}{7^{102}}.\frac{49}{50}<\frac{1}{50}\left(đpcm\right)\)

 

3 tháng 8 2015

A=3+3^1+..+3^100

3A=3^2+3^2+...+3^101

3A-A=(3^2+3^2+...+3^101)-(3+3+3^2+...+3^100)

2A=3^101+18-6

A=3^101+12/2

B=1-4+7-...-100+103

B=(1-4)+(7-10)+...+(97-100)+103

B=-3+-3+...+103 (Có (100-1)/3=33 số hạng -3)

B=-99+103

B=14

21 tháng 10 2016

Đặt \(A=\left(\frac{-1}{7}\right)^0+\left(\frac{-1}{7}\right)^1+\left(\frac{-1}{7}\right)^2+...+\left(\frac{-1}{7}\right)^{2007}\)

\(\frac{-1}{7}.A=\left(\frac{-1}{7}\right)^1+\left(\frac{-1}{7}\right)^2+\left(\frac{-1}{7}\right)^3+...+\left(\frac{-1}{7}\right)^{2008}\)

\(A-\frac{-1}{7}.A=\left[\left(\frac{-1}{7}\right)^0+\left(\frac{-1}{7}\right)^1+\left(\frac{-1}{7}\right)^2+...+\left(\frac{-1}{7}\right)^{2007}\right]-\left[\left(\frac{-1}{7}\right)^1+\left(\frac{-1}{7}\right)^2+\left(\frac{-1}{7}\right)^3+...+\left(\frac{-1}{7}\right)^{2008}\right]\)

\(A+\frac{1}{7}.A=\left(\frac{-1}{7}\right)^0-\left(\frac{-1}{7}\right)^{2008}\)

\(\frac{8}{7}.A=1-\left(\frac{1}{7}\right)^{2008}\)

\(\frac{8}{7}.A=1-\frac{1}{7^{2008}}\)

\(A=\left(1-\frac{1}{7^{2008}}\right):\frac{8}{7}=\frac{\left(1-\frac{1}{7^{2008}}\right).7}{8}\)