\(\sqrt{1+\frac{8.1^2-1}{1^2.3^2}}++\sqrt{1+\frac{8.2^2-1}{3^2.5^2}}++\sqrt...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 10 2019

\(\sqrt{1+\frac{8n^2-1}{\left(2n-1\right)^2\left(2n+1\right)^2}}=\sqrt{1+\frac{8n^2-1}{\left(4n^2-1\right)^2}}=\sqrt{\frac{\left(4n^2-1\right)^2+8n^2-1}{\left(4n^2-1\right)^2}}\)

\(=\sqrt{\frac{16n^4-8n^2+1+8n^2-1}{\left(4n^2-1\right)^2}}=\frac{4n^2}{4n^2-1}=1+\frac{1}{4n^2-1}=1+\frac{1}{2}\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right)\)

\(\Rightarrow S=1009+\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2017}-\frac{1}{2019}\right)\)

\(=1009+\frac{1}{2}\left(1-\frac{1}{2019}\right)=...\)

2 tháng 4 2017

Ôi, trang wed không tự nhận diện được công thức latex. Mình đăng lại bài giải:

a) Ta có

\(4T=\frac{4}{1+\sqrt{5}}+\frac{4}{\sqrt{5}+\sqrt{9}}+...+\frac{4}{\sqrt{2013}+\sqrt{2017}}\)

\(=\frac{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}{\sqrt{5}+1}+...+\frac{\left(\sqrt{2017}+\sqrt{2013}\right)\left(\sqrt{2017}-\sqrt{2013}\right)}{\sqrt{2017}+\sqrt{2013}}\)

\(=\sqrt{5}-1+\sqrt{9}-\sqrt{5}+\sqrt{13}-\sqrt{9}+...+\sqrt{2017}-\sqrt{2013}\)

\(=\sqrt{2017}-1\)

\(\Rightarrow T=\frac{\sqrt{2017}-1}{4}\)

b) Ta có

\(\frac{1}{2\sqrt{1}+1\sqrt{2}}=\frac{2-1}{\sqrt{2}\sqrt{1}\left(\sqrt{2}+\sqrt{1}\right)}\)

\(=\frac{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}{\sqrt{2}\sqrt{1}\left(\sqrt{2}+\sqrt{1}\right)}\)

\(=\frac{\sqrt{2}-\sqrt{1}}{\sqrt{2}\sqrt{1}}=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}\)

Tương tự ta có

\(\frac{1}{3\sqrt{2}+2\sqrt{3}}=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}\)

......................

\(\frac{1}{100\sqrt{99}+99\sqrt{100}}=\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)

Suy ra

\(S=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)

\(=1-\frac{1}{10}=\frac{9}{10}\)

1 tháng 4 2017

a)\[\begin{array}{l}
4T = \frac{4}{{1 + \sqrt 5 }} + \frac{4}{{\sqrt 5  + \sqrt 9 }} + ... + \frac{4}{{\sqrt {2013}  + \sqrt {2017} }}\\
 = \frac{{(\sqrt 5  + 1)(\sqrt 5  - 1)}}{{1 + \sqrt 5 }} + ... + \frac{{(\sqrt {2017}  + \sqrt {2013} )(\sqrt {2017}  - \sqrt {2013} )}}{{\sqrt {2013}  + \sqrt {2017} }}\\
 = \sqrt 5  - 1 + \sqrt 9  - \sqrt 5  + ... + \sqrt {2017}  - \sqrt {2013} \\
 = 1 + \sqrt 5  - \sqrt 5  + \sqrt 9  - \sqrt 9  + ... + \sqrt {2013}  - \sqrt {2013}  + \sqrt {2017} \\
 = 1 + \sqrt {2017} \\
 \Rightarrow T = \frac{{1 + \sqrt {2017} }}{4}
\end{array}\]

7 tháng 7 2017

Với mọi \(n\in N.\)ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{\left(n+1\right)^2n-n^2\left(n+1\right)}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}.\)Do đó

\(P=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2016}}-\frac{1}{\sqrt{2017}}.=1-\frac{1}{\sqrt{2017}}=\frac{\sqrt{2017}-1}{\sqrt{2017}}.\)

11 tháng 7 2019

\(S=\frac{\sqrt{3}-1}{3-1}+\frac{\sqrt{5}-\sqrt{3}}{5-3}+\frac{\sqrt{7}-\sqrt{5}}{7-5}+...+\frac{\sqrt{2019^2}-\sqrt{2019^2-2}}{2019^2-\left(2019^2-2\right)}\)

\(S=\frac{\sqrt{3}-1}{2}+\frac{\sqrt{5}-\sqrt{3}}{2}+\frac{\sqrt{7}-\sqrt{5}}{2}+...+\frac{\sqrt{2019^2}-\sqrt{2019^2-2}}{2}\)

\(S=\frac{1}{2}\left(\sqrt{3}-1+\sqrt{5}-\sqrt{3}+\sqrt{7}-\sqrt{5}+...+\sqrt{2019^2}-\sqrt{2019^2-2}\right)\)

\(S=\frac{1}{2}\left(-1+\sqrt{2019^2}\right)\)

\(S=\frac{\left(2019-1\right)}{2}=1009\)

11 tháng 7 2019

\(S=\frac{1-\sqrt{3}}{1-3}+\frac{\sqrt{3}-\sqrt{5}}{3-5}+\frac{\sqrt{5}-\sqrt{7}}{5-7}+...+\frac{2019-\sqrt{2019^2-2}}{2019^2-2019^2-2}.\)

\(S=\frac{1-\sqrt{3}}{-2}+\frac{\sqrt{3}-\sqrt{5}}{-2}+\frac{\sqrt{5}-\sqrt{7}}{-2}+...+\frac{2019-\sqrt{2019^2-2}}{-2}.\)

\(-2S=1-\sqrt{3}+\sqrt{3}-\sqrt{5}+\sqrt{5}...+2019-\sqrt{2019^2-2}\)

\(-2S=1-\sqrt{2019^2-2}\Rightarrow S=\frac{\sqrt{2019^2-2}-1}{2}\)

27 tháng 12 2018

\(Tongquat:\)

\(\sqrt{1+\frac{1}{n}+\frac{1}{\left(n+1\right)^2}}=\sqrt{1+\frac{1}{n}+\frac{2}{n}-\frac{2}{n+1}-\frac{2}{n\left(n+1\right)}+\frac{1}{\left(n+1\right)^2}}\)

\(=\sqrt{\left(1+\frac{1}{n}\right)^2-2\left(1+\frac{1}{n}\right)\frac{1}{n+1}+\frac{1}{n+1}}=\sqrt{\left(1+\frac{1}{n}-\frac{1}{n+1}\right)^2}\)

\(=|1+\frac{1}{n}-\frac{1}{n+1}|=1+\frac{1}{n}-\frac{1}{n+1}\)

Thay vào ta có:

\(P=1+\frac{1}{2}-\frac{1}{3}+1+\frac{1}{3}-\frac{1}{4}+.........-\frac{1}{2017}\)

\(P=2015+\frac{1}{2}-\frac{1}{2017}=2015+\frac{2015}{4034}\)