Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left|x-\frac{1}{3}\right|+\left|x-y\right|=0\)
\(\Leftrightarrow\begin{cases}x-\frac{1}{3}=0\\x-y=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=\frac{1}{3}\\x=y\end{cases}\)\(\Leftrightarrow x=y=\frac{1}{3}\)
Ta có :
\(B=\frac{5}{2\cdot1}+\frac{4}{1\cdot11}+\frac{3}{11\cdot2}+\frac{1}{2\cdot15}+\frac{13}{15\cdot4}\)
\(=>\frac{B}{7}=\frac{5}{2\cdot7}+\frac{4}{7\cdot11}+\frac{3}{11\cdot14}+\frac{1}{14\cdot15}+\frac{13}{15\cdot28}\)
\(=>\frac{B}{7}=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)
\(=>\frac{B}{7}=\frac{1}{2}-\frac{1}{28}=\frac{14}{28}-\frac{1}{28}=\frac{13}{28}\)
\(=>B=\frac{13}{28}\cdot7=\frac{13}{4}\)
gọi ƯCLN của tử và mẫu =d
ta có;
2n+1chia hết cho d suy ra 6n+3chia hết cho d
3n +2 chia hết cho d suy ra 6n+4 chia hết cho d
suy ra {6n+4}-{6n+3} chia hết cho d
hay 1 chia hết cho d
suy ra d =1
vậy phân số trên là phân số tối giản
Giải:
Đặt ƯCLN (2n + 1; 3n +2) = d (d \(\in\) N*).
\(\Rightarrow\left\{{}\begin{matrix}2n+1⋮d\\3n+2⋮d\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}6n+3⋮d\\6n+4⋮d\end{matrix}\right..}}\)\(\Rightarrow\left(6n+4\right)-\left(6n+3\right)⋮d.\)
hay \(1⋮d\Rightarrow d=1.\)
Vậy \(\dfrac{2n+1}{3n+2}\) là phân số tối giản \(\forall\) n \(\in\) N*.
~ Học tốt!!! ~
Theo đề bài ta có :
\(A=\frac{n+1}{n-1}=\frac{1}{2}\)
\(\Leftrightarrow2\left(n+1\right)=n-1\)
\(\Leftrightarrow2n+2=n-1\)
\(\Leftrightarrow2n-n=-1-2\)
\(\Rightarrow n=-3\)
Vậy với n = - 3 thì A = \(\frac{1}{2}\)
\(\frac{1}{7}\)B=\(\frac{5}{2.7.1}+\frac{4}{1.7.11}+\frac{3}{11.2.7}+\frac{1}{2.7.15}+\frac{13}{15.4.7}\)
\(\frac{1}{7}\)B=\(\frac{5}{2.7}+\frac{4}{7.11}+\frac{3}{11.14}+\frac{1}{14.15}+\frac{13}{15.28}\)
\(\frac{1}{7}B=\frac{1}{2}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+\frac{1}{11}-\frac{1}{14}+\frac{1}{14}-\frac{1}{15}+\frac{1}{15}-\frac{1}{28}\)
\(\frac{1}{7}B=\frac{1}{2}-\frac{1}{28}\)
\(\frac{1}{7}B=\frac{13}{28}\)
B=\(\frac{13}{28}:\frac{1}{7}\)
B=\(\frac{13}{4}\)
1717B=52.7.1+41.7.11+311.2.7+12.7.15+1315.4.752.7.1+41.7.11+311.2.7+12.7.15+1315.4.7
1717B=52.7+47.11+311.14+114.15+1315.2852.7+47.11+311.14+114.15+1315.28
17B=12−17+17−111+111−114+114−115+115−12817B=12−17+17−111+111−114+114−115+115−128
17B=12−12817B=12−128
17B=132817B=1328
B=1328:171328:17
B=134
1717B=52.7.1+41.7.11+311.2.7+12.7.15+1315.4.752.7.1+41.7.11+311.2.7+12.7.15+1315.4.7
1717B=52.7+47.11+311.14+114.15+1315.2852.7+47.11+311.14+114.15+1315.28
17B=12−17+17−111+111−114+114−115+115−12817B=12−17+17−111+111−114+114−115+115−128
17B=12−12817B=12−128
17B=132817B=1328
B=1328:171328:17
B=134
1717B=52.7.1+41.7.11+311.2.7+12.7.15+1315.4.752.7.1+41.7.11+311.2.7+12.7.15+1315.4.7
1717B=52.7+47.11+311.14+114.15+1315.2852.7+47.11+311.14+114.15+1315.28
17B=12−17+17−111+111−114+114−115+115−12817B=12−17+17−111+111−114+114−115+115−128
17B=12−12817B=12−128
17B=132817B=1328
B=1328:171328:17
B=134
1717B=52.7.1+41.7.11+311.2.7+12.7.15+1315.4.752.7.1+41.7.11+311.2.7+12.7.15+1315.4.7
1717B=52.7+47.11+311.14+114.15+1315.2852.7+47.11+311.14+114.15+1315.28
17B=12−17+17−111+111−114+114−115+115−12817B=12−17+17−111+111−114+114−115+115−128
17B=12−12817B=12−128
17B=132817B=1328
B=1328:171328:17
B=134
1717B=52.7.1+41.7.11+311.2.7+12.7.15+1315.4.752.7.1+41.7.11+311.2.7+12.7.15+1315.4.7
1717B=52.7+47.11+311.14+114.15+1315.2852.7+47.11+311.14+114.15+1315.28
17B=12−17+17−111+111−114+114−115+115−12817B=12−17+17−111+111−114+114−115+115−128
17B=12−12817B=12−128
17B=132817B=1328
B=1328:171328:17
B=134
1717B=52.7.1+41.7.11+311.2.7+12.7.15+1315.4.752.7.1+41.7.11+311.2.7+12.7.15+1315.4.7
1717B=52.7+47.11+311.14+114.15+1315.2852.7+47.11+311.14+114.15+1315.28
17B=12−17+17−111+111−114+114−115+115−12817B=12−17+17−111+111−114+114−115+115−128
17B=12−12817B=12−128
17B=132817B=1328
B=1328:171328:17
B=134
1717B=52.7.1+41.7.11+311.2.7+12.7.15+1315.4.752.7.1+41.7.11+311.2.7+12.7.15+1315.4.7
1717B=52.7+47.11+311.14+114.15+1315.2852.7+47.11+311.14+114.15+1315.28
17B=12−17+17−111+111−114+114−115+115−12817B=12−17+17−111+111−114+114−115+115−128
17B=12−12817B=12−128
17B=132817B=1328
B=1328:171328:17
B=134
1717B=52.7.1+41.7.11+311.2.7+12.7.15+1315.4.752.7.1+41.7.11+311.2.7+12.7.15+1315.4.7
1717B=52.7+47.11+311.14+114.15+1315.2852.7+47.11+311.14+114.15+1315.28
17B=12−17+17−111+111−114+114−115+115−12817B=12−17+17−111+111−114+114−115+115−128
17B=12−12817B=12−128
17B=132817B=1328
B=1328:171328:17
B=134
\(\frac{2x+1}{3}=\frac{5}{2}\)
\(2x+1=\frac{5.3}{2}=\frac{15}{2}\)
2x= 15/2 - 1 = 13/2
x = 13/2 : 2
x = 13/4
b) 2x + 2x+1 + 2x+2 + 2x+3 = 480
2x.(1+ 2 +22 + 23) = 480
2x . 15 = 480
2x = 480 : 15 = 32
2x = 25 => x = 5
c) \(\left(\frac{3x}{7}+1\right):\left(-4\right)=-\frac{1}{28}\)
\(\frac{3x}{7}+1=\frac{-1}{28}.\left(-4\right)=\frac{1}{7}\)
\(\frac{3x}{7}=\frac{1}{7}-1=-\frac{6}{7}\)
< = > 3x= -6 => x = -2
Ta có : \(\dfrac{1}{2}xOy=\dfrac{1}{7}yOz\Rightarrow xOy=\dfrac{1}{7}yOz:\dfrac{1}{2}=\dfrac{2}{7}yOz\)
Ta lại có : góc xOy + góc yOz = 180 độ( hai góc kề bù )
\(\Rightarrow\) \(\dfrac{2}{7}yOz\) + góc yOz = 180 độ
\(\Rightarrow\)yOz(\(\dfrac{2}{7}+1\)) = 180 độ
\(\Rightarrow\)\(\dfrac{9}{7}yOz\)= 180 độ
\(\Rightarrow\)yOz = 180 : \(\dfrac{9}{7}\)=180 .\(\dfrac{7}{9}\)= 140 độ
Khi đó : xOy = 140 . \(\dfrac{2}{7}\)= 40 độ
1,=0 . [2017/2018+2018/2019]
=>0
2,TH1 x-3=0=>x=3
TH2 y-4=0=>y=4
3, -2/4 = -x/10 = 16/y
=>-1/2 = -x/10 = 16/y
=>-1/2 = -x/10 => -5/10 = -x/10 => x=5
-1/2 = 16/y => 16/-32 = 16/y => y = -32
Ta có: \(\frac{a}{b}< \frac{a+1}{b+1}\)
\(B=\frac{10^{2013}+1}{10^{2014}+1}< \frac{10^{2013}+1+9}{10^{2014}+1+9}=\frac{10^{2013}+10}{10^{2014}+10}=\frac{10\left(10^{2012}+1\right)}{10\left(10^{2013}+1\right)}=\frac{10^{2012}+1}{2^{2013}+1}=A\)
Vậy: \(A>B\)
Ta có:
\(10A=\frac{10\left(10^{2012}+1\right)}{10^{2013}+1}=\frac{10^{2013}+10}{10^{2013}+1}=\frac{10^{2013}+1+9}{10^{2013}+1}=\frac{10^{2013}+1}{10^{2013}+1}+\frac{9}{10^{2013}+1}=1+\frac{9}{10^{2013}+1}\)
\(10B=\frac{10\left(10^{2013}+1\right)}{10^{2014}+1}=\frac{10^{2014}+10}{10^{2014}+1}=\frac{10^{2014}+1+9}{10^{2014}+1}=\frac{10^{2014}+1}{10^{2014}+1}+\frac{9}{10^{2014}+1}=1+\frac{9}{10^{2014}+1}\)
Vì 102013+1<102014+1
\(\Rightarrow\frac{9}{10^{2013}+1}>\frac{9}{10^{2014}+1}\)
\(\Rightarrow1+\frac{9}{10^{2013}+1}>1+\frac{9}{10^{2014}+1}\)
\(\Rightarrow10A>10B\)
\(\Rightarrow A>B\)
Chào bạn, bạn hãy theo dõi bài giải của mình nhé!
\(\frac{1}{15}+\frac{1}{21}+\frac{1}{28}+...+\frac{1}{946}+\frac{1}{990}\)
\(=\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+...+\frac{2}{1892}+\frac{2}{1980}\)
\(=\frac{2}{5\cdot6}+\frac{2}{6\cdot7}+\frac{2}{7\cdot8}+...+\frac{2}{43\cdot44}+\frac{2}{44\cdot45}\)
\(=2\left(\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+...+\frac{1}{43\cdot44}+\frac{1}{44\cdot45}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{43}-\frac{1}{44}+\frac{1}{44}-\frac{1}{45}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{45}\right)=2\left(\frac{9}{45}-\frac{1}{45}\right)=2\cdot\frac{8}{45}=\frac{16}{45}\)
Chúc bạn học tốt!