K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2016

Vì a và b là các số nguyên dương khác nhau nên nếu 1 số bằng 1 thì số kia cũng bằng 1 vậy a và b đều lớn hơn 1. 
Do a>1 nên tồn tại ít nhất một ước số nguyên tố. giả sử p là ước nguyên tố của a. 
Giả sử: a=c.p^n; n≥1 và UCLN(c, p)=1. 
a ⋮ p => a^7 ⋮ p => b^8 ⋮ p . 
do p nguyên tố nên => b ⋮ p. giả sử b = d.p^m; m≥1 và UCLN(d, p)=1. 
Ta có a^7 = c^7.p^(7n) và b^8 = d^8.p^(8m). 
=>c^7.p^(7n) = d^8.p^(8m). 
do UCLN(c, p) =1 => UCLN(c^7, p)=1 => UCLN(c^7, p^(8m))=1 
tương tự UCLN (d^8, p^(7n))=1. 
=> c^7=d^8 và p^(7n)=p^(8m). 
a, b nhỏ nhất => c=d=1. 
p^(7n)=p^(8m) => 7n=8m. => m ⋮ 7 và n ⋮ 8 => m,n nhỏ nhất là n=8 và m=7. 
=>a=p^8 và b=p^7.

p nguyên tố nhỏ nhất là p=2. 
=> a=2^8=256 và b=2^7=128 => a+b = 256+128=384.

Câu 1: Cho N=36 x 57. Số ước nguyên của N là:…?Câu 2: Số tự nhiên nhỏ nhất có 5 chữ số khác nhau mà tổng bằng 23Câu 3: Cho số M= 26x3x5   . Ước nguyên âm nhỏ nhất của M là …?Câu 4: Số tự nhiên n có 3 chữ số lớn nhất sao cho 2n+7 chia hết cho 13Câu 5: Tìm x biết: I x2- 2I + I 2-x2I= 28. Tìm tập hợp các gtrị x nguyên thỏa mãn: {…}Câu 6: Số các cặp (x; y)  nguyên thỏa mãn biết: x>y và x/9= 7/y...
Đọc tiếp

Câu 1: Cho N=36 x 57. Số ước nguyên của N là:…?

Câu 2: Số tự nhiên nhỏ nhất có 5 chữ số khác nhau mà tổng bằng 23

Câu 3: Cho số M= 26x3x5   . Ước nguyên âm nhỏ nhất của M là …?

Câu 4: Số tự nhiên n có 3 chữ số lớn nhất sao cho 2n+7 chia hết cho 13

Câu 5: Tìm x biết: I x2- 2I + I 2-x2I= 28. Tìm tập hợp các gtrị x nguyên thỏa mãn: {…}

Câu 6: Số các cặp (x; y)  nguyên thỏa mãn biết: x>y và x/9= 7/y là….

Câu 7: Tìm số tự nhiên          a bé nhất biết a: 120 dư 58 và a: 135 dư 88

Câu 8: Biết a+b= 12.

Tính A= 15a+ 7b- (6a-2b)+32

Câu 9: Tổng 30 số tự nhiên liên tiếp là 2025. Giả sử d là ƯCLN của số đó. Khi đó gtrị lớn nhất của d là bao nhiêu.

Câu 10: Cho số tự nhiên B= ax by  trong đó a và b là các số tự nhiên khác nhau và khác 0. Biết B2 có 15 ước. Hỏi B3  tât cả bao nhiêu ước ?

0
6 tháng 3 2016

Vì a và b là các số nguyên dương khác nhau nên nếu một số bằng 1 thì số kia cũng bằng một nên a và b >1

Do a>1 nên tồn tại ít nhất một ước số nguyên tố . Giả sử p là ước nguyên tố của a

Giả sử a=c.pn ; n\(\ge\)1 và ƯCLN(d;p)=1

a chia hết cho p => a7 chia hết cho p =>b8 chia hết cho p

do p nguyên tố nên => b chia hết cho p . Giả sử b=d.pm ; m\(\ge\)1 và ƯCLN(d;p)=1

Ta có a=c7 p7n và b8 =d8 .p8m 

=>c7 .p7n =d8 .p8m

do ƯCLN(c;p)=1=>ƯCLN(c7;p)=1=>ƯCLN(c7 ; p8m )=1

tương tự ƯCLN(d8 ;p7n)=1

=>c7=d8 và p7n =p8n

a,b nhỏ nhất =>c=d=1

p7n =p8m =>7n=8m . => m chia hết cho 7 và n chia hết cho 8 => n=8 và m=7

=>a=p8 và b=p7

p nguyên tố nhỏ nhất p=2

=>a=256 ; b=128 =>256+128=384

1/ a)Cho A= 20+21+22+23+24+25 +26 .........+ 299  CMR: A chia hết cho 31 b)tìm số tự nhiên n để 3n+4 chia hết cho n -12/tìm hai số nguyên dương a, b  biết  [ a,b] = 240 và (a,b) = 163/tìm hai số nguyên dương a,b biết rằng ab=216 và (a ,b)=64/tìm hai số nguyên dương a,b biết rằng ab=180 , [a,b] =605/tìm hai số nguyên dương a,b biết a/b =2,6 và (a,b) =56/ tìm a,b biết a/b=4/5 và [ a,b ] = 1407/tìm số nguyên dương  a,b biết...
Đọc tiếp

1/ a)Cho A= 20+21+22+23+24+25 +26 .........+ 299  CMR: A chia hết cho 31 

b)tìm số tự nhiên n để 3n+4 chia hết cho n -1

2/tìm hai số nguyên dương a, b  biết  [ a,b] = 240 và (a,b) = 16

3/tìm hai số nguyên dương a,b biết rằng ab=216 và (a ,b)=6

4/tìm hai số nguyên dương a,b biết rằng ab=180 , [a,b] =60

5/tìm hai số nguyên dương a,b biết a/b =2,6 và (a,b) =5

6/ tìm a,b biết a/b=4/5 và [ a,b ] = 140

7/tìm số nguyên dương  a,b biết a+b = 128 và (a ,b)=16

8/ a)tìm a,b biết a+b = 42 và [a,b] = 72 

b)tìm a,b biết a-b =7 , [a,b] =140

9/tìm hai số tự nhiên , biết rằng tổng cúa chúng bằng 100 và có UwCLN là 10

10/ tìm 2 số tự nhiên biết ƯCLN của chúng là 5 và chúng có tích là 300

11/ chứng minh rằng nếu số nguyên tố p> 3 thì (p - 1) . (p + 1)  chia hết cho 24

12/ tìm hai số tự nhiên a,b (a < b ) biết ƯCLN (a,b ) = 12 ,  BCNN(a,b) = 180

 

2
29 tháng 10 2015

BÀI NÀY Ở ĐÂU MÀ NHIỀU THẾ BẠN!?

GIẢI CHẮC ĐÃ LẮM ĐÓ

29 tháng 10 2015

câu 1 a) thíu là chứng minh rằng a chia hết cho 31

 

13 tháng 2 2020

Câu hỏi của Lê Linh An - Toán lớp 6 - Học toán với OnlineMath

28 tháng 2 2020

Xét :\(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\)

\(=\left(a^2+a\right)+\left(b^2+b\right)+\left(c^2+c\right)+\left(d^2+d\right)\)

\(=a.\left(a+1\right)+b.\left(b+1\right)+c.\left(c+1\right)+d.\left(d+1\right)\)

Ta có : \(a.\left(a+1\right);b.\left(b+1\right);c.\left(c+1\right);d.\left(d+1\right)\) là tích của hai số nguyên dương liên tiếp .Do đó chúng chia hết cho \(2\)

\(\implies\) \(\left(a^2+b^2+c^2+d^2\right)+\left(a+b+c+d\right)\) chia hết cho \(2\)

Mà \(a^2+b^2+c^2+d^2=2.\left(b^2+d^2\right)\) chia hết cho \(2\)

  \(\implies\)  \(a+b+c+d\) chia hết cho \(2\)

Mà \(a+b+c+d\) \(\geq\)   \(4\)  \(\implies\) \(a+b+c+d\) là hợp số \(\left(đpcm\right)\) 

25 tháng 4 2017

 Theo hằng đẳng thức 
\(a^2+b^2=\left(a+b\right)^2-2ab;\) 
\(c^2+d^2=\left(c+d\right)^2-2cd\)    

\(\Rightarrow\)
\(a^2+b^2\)\(a+b\) cùng chẵn, hoặc cùng lẻ; 
\(c^2+d^2\) và \(c+d\)cùng chẵn hoặc cùng lẻ. Kết hợp với 
\(a^2+b^2=c^2+d^2\Rightarrow a+b\) và \(c+d\) cùng chẵn hoặc cùng lẻ
Từ đó \(a+b+c+d\)chẵn, và vì \(a+b+c+d\ge4\)
 nên \(a+b+c+d\) là hợp số.

5 tháng 5 2017

Xét ( a2 + b2 + c2 + d2 )  - ( a + b + c + d)

        = a(a -1)  + b( b -1) + c( c – 1) + d( d – 1)

Vì a là  số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp

=> a(a-1) chia hết cho 2. Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2

=> a(a -1)  + b( b -1) + c( c – 1) + d( d – 1) là số chẵn

Lại có a2 + c2 = b2 + d2=>  a2 + b2 + c2 + d2 = 2( b2 + d2) là số chẵn.

Do đó a + b + c + d là số chẵn mà a + b + c + d > 2 (Do a, b, c, d thuộc N*)

 a + b + c + d là hợp số.

3 tháng 1 2015

Bài 1: n có 4 chữ số dạng 20ab => 20ab + 2 + a +b=2013 => 11a+b=11

a=0 => b=11(loại)

a=1 => b=0 => n=2010

với n<2000 => tổng các chữ số của n lớn nhất là: 1+9+9+9=28 => n  ≥ 2013-28=1985

xét n có dạng 19ab: 19ab+1+9+a+b=2013 => 11a+b=103

do n ≥ 1985 => a ≥ 8

a=8 => b=7,5 (loại)

a=9 => b=2 => n=1992

3 tháng 1 2015

Bài 2: Chắc là hợp số :D

từ \(a^2+b^2+c^2=e^2+f^2+d^2\)

=> \(a^2+b^2+c^2\text{ ≡}d^2+e^2+f^2\)(mod 2)

=> \(a^2+b^2+c^2+2\left(ab+bc+ca\right)\)  ≡ \(d^2+e^2+f^2+2\left(de+ef+fd\right)\)(mod 2)

=>\(\left(a+b+c\right)^2\text{ ≡}\left(d+e+f\right)^2\) (mod 2)

=>a+b+c ≡ d+e+f (mod 2)

=> a+b+c+d+e+f chia hết cho 2