Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\) ( 1 )
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)( 2 )
Lấy ( 2 ) - ( 1 ) ta được :
\(2A=1-\frac{1}{3^{100}}\)
\(\Rightarrow A=\frac{1-\frac{1}{3^{100}}}{2}\)
3A=1+1/3+1/3^2+...........+1/3^99
3A-A=1-1/3^100
A=(1-1/3^100):2
A = 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^100
A : 3 = 1/3. ( 1/3 + 1/3^2 + ... + 1/3^100 )
A : 3 = 1/3^2 + 1/3^3 + ... + 1/3^101
A - A : 3 = 1/3 + 1/3^2 + ... + 1/3^100 - 1/3^2 - 1/3^3 - ... - 1/3^101
A . 2/3 = (1/3^2 - 1/3^2) + (1/3^3 - 1/3^3) + ... + (1/3^100 - 1/3^100) + ( 1/3 - 1/3^101 )
A . 2/3 = 0 + 0 + 0 + ... + 0 + 1/3 - 1/3^101
A . 2/3 = 1/3 - 1/3^101
=> A = 1/2 - 1/3^100.2
Đặt biểu thức trên là A
3A=1+1/3+1/3^2+...+1/3^99
3A-A= 1- 1/3^100
2A=1-1/3^100
A=(1-1/3^100)/2