\(I=\int\frac{a_1\sin x+b_1\cos x}{\left(a_2\sin x+b_2\cos x\rig...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2016

Thực hiện theo các bước sau :

Bước 1 : Biến đổi :

\(a_1\sin x+b_1\cos x=A\left(a_2\sin x+b_2\cos x\right)+B\left(a_2\cos x-b_2\sin x\right)\)

Bước 2 : Khi đó :

\(I=\int\frac{A\left(a_2\sin x+b_2\cos x\right)+B\left(a_2\cos x-b_2\sin x\right)}{\left(a_2\sin x+b_2\cos x\right)^2}dx=A\int\frac{dx}{a_2\cos x+b_2\sin x}+B\int\frac{\left(a_2\cos x+b_2\sin x\right)dx}{\left(a_2\cos x+b_2\sin x\right)^2}\)

\(=\frac{A}{\sqrt{a^2_2+b^2_2}}\int\frac{dx}{\sin\left(x+\alpha\right)}-B\int\frac{1}{a_2\sin x+b_2\cos x}dx=\frac{A}{\sqrt{a^2_2+b^2_2}}\ln\left|\tan\left(\frac{x+\alpha}{2}\right)\right|-\frac{B}{a_2\cos x+b_2\sin x}+C\)

Trong đó : \(\sin\alpha=\frac{b_2}{\sqrt{a^2_2+b^2_2}_{ }};\cos\alpha=\frac{a_2}{\sqrt{a^2_2+b^2_2}}\)

30 tháng 1 2016

a1sinx+b1cosx=A(a2sinx+b2cosx)+B(a2cosx-b2sinx) roi the vo ,do la dung dong nhat thuc

30 tháng 1 2016

ma ban lam cai nay lam chi ,dai hoc dau co ma

20 tháng 1 2016

Ta thực hiện theo các bước sau :

Bước 1 : Biến đổi

\(a_1\sin^2x+b_1\sin x\cos x+c_1\cos^2x=\left(A\sin x+B\cos x\right)\left(a_2\sin x+b_2\cos x\right)+C\left(\sin^2x+\cos^2x\right)\)

Bước 2 : Khi đó :

\(I=\int\frac{\left(A\sin x+B\cos x\right)\left(a_2\sin x+b_2\cos x\right)+C\left(\sin^2x+\cos^2x\right)}{a_2\sin x+b_2\cos x}\)

  \(=\int\left(A\sin x+B\cos x\right)+C\int\frac{dx}{a_2\sin x+b_2\cos x}\)

\(-A\cos x+B\sin x+\sqrt{\frac{C}{a^2_a+b_2^2}}\int\frac{dx}{\sin\left(x+\alpha\right)}\)

=\(-A\cos x+B\sin x+\frac{C}{\sqrt{a_2^2+b^2_2}}\ln\left|\tan\frac{x+\alpha}{2}\right|+C\)

Trong đó :

\(\sin\alpha=\frac{b_2}{\sqrt{a_2^2}+b^{2_{ }}_2};\cos\alpha=\frac{a_2}{\sqrt{a_2^2}+b^{2_{ }}_2}\)

 

 

 

 

20 tháng 1 2016

Ta thực hiện theo các bước sau :

Bước 1 : Biến đổi 

\(a_1\sin x+b_1\cos x+c_1=A\left(a_2\sin x+b_2\cos x+c_2\right)+B\left(a_2\cos x+b_2\sin x\right)+C\)

Bước 2 : Khi đó :

\(I=\int\frac{A\left(a_2\sin x+b_2\cos x+c_2\right)+B\left(a_2\cos x+b_2\sin x\right)+C}{_2\sin x+b_2\cos x+c_2}\)

\(=A\int dx+B\int\frac{\left(a_2\cos_{ }x-b_2\sin x_{ }\right)dx}{_{ }a_2\sin x+b_2\cos x+c_2}+C\int\frac{dx}{a_2\sin x+b_2\cos x+c_2}\)

\(=Ax+B\ln\left|a_2\sin x+b_2\cos x+c_2\right|+C\int\frac{dx}{a_2\sin x+b_2\cos x+c_2}\)

Trong đó :

\(\int\frac{dx}{a_2\sin x+b_2\cos x+c_2}\)

20 tháng 1 2016

Ta có :

\(I=\int\frac{dx}{\left(3\tan^2x-2\tan x-1\right)\cos^2x}=\int\frac{d\left(\tan x\right)}{3\tan^2x-2\tan x-1}\)

Đặt \(t=\tan x\Rightarrow I=\int\frac{dt}{3t^2-2t-1}=\frac{1}{3}.\frac{1}{t+\frac{1}{3}}\int\left(\frac{1}{t-1}-\frac{1}{t+\frac{1}{3}}\right)dt\)

\(\frac{1}{4}\ln\left|\frac{t-1}{t+\frac{1}{3}}\right|=\frac{1}{4}\ln\left|\frac{3t-3}{3t +3}\right|+C\)

Thay trả lại :

\(t=\tan x\Rightarrow I=\frac{1}{4}\ln\left|\frac{3\tan x-3}{3\tan x+1}\right|+C\)

23 tháng 1 2016

\(I=\frac{1}{\sqrt{a^2+b^2}}\int\frac{dx}{\sin\left(x+\alpha\right)}=\frac{1}{\sqrt{a^2+b^2}}\int\frac{dx}{2\sin\frac{x+\alpha}{2}.\cos\frac{x+\alpha}{2}}=\frac{1}{\sqrt{a^2+b^2}}\int\frac{dx}{2\tan\frac{x+\alpha}{2}.\cos^2\frac{x+\alpha}{2}}\)

\(\Rightarrow\frac{1}{\sqrt{a^2+b^2}}\int\frac{d\left(\tan\frac{x+\alpha}{2}\right)}{\tan\frac{x+\alpha}{2}}=\frac{1}{\sqrt{a^2+b^2}}\ln\left|\tan\frac{x+\alpha}{2}\right|+C\)

23 tháng 1 2016

chịu

AH
Akai Haruma
Giáo viên
8 tháng 7 2017

a)

Ta có \(A=\int ^{\frac{\pi}{4}}_{0}\cos 2x\cos^2xdx=\frac{1}{4}\int ^{\frac{\pi}{4}}_{0}\cos 2x(\cos 2x+1)d(2x)\)

\(\Leftrightarrow A=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos x(\cos x+1)dx=\frac{1}{4}\int ^{\frac{\pi}{2}}_{0}\cos xdx+\frac{1}{8}\int ^{\frac{\pi}{2}}_{0}(\cos 2x+1)dx\)

\(\Leftrightarrow A=\frac{1}{4}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin x+\frac{1}{16}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|\sin 2x+\frac{1}{8}\left.\begin{matrix} \frac{\pi}{2}\\ 0\end{matrix}\right|x=\frac{1}{4}+\frac{\pi}{16}\)

b)

\(B=\int ^{1}_{\frac{1}{2}}\frac{e^x}{e^{2x}-1}dx=\frac{1}{2}\int ^{1}_{\frac{1}{2}}\left ( \frac{1}{e^x-1}-\frac{1}{e^x+1} \right )d(e^x)\)

\(\Leftrightarrow B=\frac{1}{2}\left.\begin{matrix} 1\\ \frac{1}{2}\end{matrix}\right|\left | \frac{e^x-1}{e^x+1} \right |\approx 0.317\)

AH
Akai Haruma
Giáo viên
8 tháng 7 2017

c)

\(C=\int ^{1}_{0}\frac{(x+2)\ln(x+1)}{(x+1)^2}d(x+1)\).

Đặt \(x+1=t\)

\(\Rightarrow C=\int ^{2}_{1}\frac{(t+1)\ln t}{t^2}dt=\int ^{2}_{1}\frac{\ln t}{t}dt+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)

\(=\int ^{2}_{1}\ln td(\ln t)+\int ^{2}_{1}\frac{\ln t}{t^2}dt=\frac{\ln ^22}{2}+\int ^{2}_{1}\frac{\ln t}{t^2}dt\)

Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=\frac{dt}{t^2}\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=\frac{-1}{t}\end{matrix}\right.\Rightarrow \int ^{2}_{1}\frac{\ln t}{t^2}dt=\left.\begin{matrix} 2\\ 1\end{matrix}\right|-\frac{\ln t+1}{t}=\frac{1}{2}-\frac{\ln 2 }{2}\)

\(\Rightarrow C=\frac{1}{2}-\frac{\ln 2}{2}+\frac{\ln ^22}{2}\)

AH
Akai Haruma
Giáo viên
2 tháng 12 2017

1)

Ta có \(P_1=\int \frac{\cos xdx}{2\sin x-7}=\int \frac{d(\sin x)}{3\sin x-7}\)

Đặt \(\sin x=t\Rightarrow P_1=\int \frac{dt}{3t-7}=\frac{1}{3}\int \frac{d(3t-7)}{3t-7}=\frac{1}{3}\ln |3t-7|+c\)

\(=\frac{1}{3}\ln |3\sin x-7|+c\)

2)

\(P_2=\int \sin xe^{2\cos x+3}dx\)

Đặt \(\cos x=t\)

\(P_2=-\int e^{2\cos x+3}d(\cos x)=-\int e^{2t+3}dt\)

\(=-\frac{1}{2}\int e^{2t+3}d(2t+3)=\frac{-1}{2}e^{2t+3}+c\)

\(=\frac{-e^{2\cos x+3}}{2}+c\)

AH
Akai Haruma
Giáo viên
2 tháng 12 2017

3)

\(P_3=\int \frac{\sin x+x\cos x}{(x\sin x)^2}dx\)

Để ý rằng \((x\sin x)'=x'\sin x+x(\sin x)'=\sin x+x\cos x\)

Do đó: \(d(x\sin x)=(x\sin x)'dx=(\sin x+x\cos x)dx\)

Suy ra \(P_3=\int \frac{d(x\sin x)}{(x\sin x)^2}\)

Đặt \(x\sin x=t\Rightarrow P_3=\int \frac{dt}{t^2}=\frac{-1}{t}+c=\frac{-1}{x\sin x}+c\)