\(\sqrt{17-\sqrt{33}}.\sqrt{17+\sqrt{33}}\) có kết quả là 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2023

\(\sqrt{17-\sqrt{33}}\cdot\sqrt{17+\sqrt{33}}\)

\(=\sqrt{17^2-\left(\sqrt{33}\right)^2}\)

\(=\sqrt{289-33}=\sqrt{256}=16\)

14 tháng 10 2018

Giải:

\(\sqrt{42-10\sqrt{17}}+\sqrt{33-8\sqrt{17}}\)

\(=\sqrt{\left(5-\sqrt{17}\right)^2}+\sqrt{\left(4-\sqrt{17}\right)^2}\)

\(=\left|5-\sqrt{17}\right|+\left|4-\sqrt{17}\right|\)

\(=5-\sqrt{17}+\sqrt{17}-4\)

\(=1\)

Vậy ...

15 tháng 10 2018

\(\sqrt{42-10\sqrt{17}}+\sqrt{33-8\sqrt{17}}=\sqrt{25-2.5.\sqrt{17}+17}+\sqrt{16-2.4.\sqrt{17}+17}=\sqrt{\left(5-\sqrt{17}\right)^2}+\sqrt{\left(4-\sqrt{17}\right)^2}=\left|5-\sqrt{17}\right|+\left|4-\sqrt{17}\right|=5-\sqrt{17}+\sqrt{17}-4=1\)

15 tháng 6 2019

Có :

+) \(\sqrt{33}< \sqrt{36}\)

+) \(\sqrt{17}>\sqrt{15}\Rightarrow-\sqrt{17}< -\sqrt{15}\)

Cộng theo vế 2 bất pt :

\(\sqrt{33}-\sqrt{17}< \sqrt{36}-\sqrt{15}=6-\sqrt{15}\)

Vậy...

Có :

\(3\sqrt{2}=\sqrt{18}\)

\(2\sqrt{3}=\sqrt{12}\)

\(\sqrt{18}>\sqrt{12}\Rightarrow3\sqrt{2}>2\sqrt{3}\)

\(\Rightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

AH
Akai Haruma
Giáo viên
17 tháng 6 2019

Lời giải:
Xét hiệu:

\(\sqrt{33}-\sqrt{17}-(6-\sqrt{15})=(\sqrt{33}-6)+(\sqrt{15}-\sqrt{17})\)

\(< (\sqrt{36}-6)+(\sqrt{17}-\sqrt{17})=0+0=0\)

\(\Rightarrow \sqrt{33}-\sqrt{17}< 6-\sqrt{15}\)

------------------------

\(\sqrt{3\sqrt{2}}=\sqrt{\sqrt{3^2.2}}=\sqrt[4]{18}\)

\(\sqrt{2\sqrt{3}}=\sqrt{\sqrt{2^2.3}}=\sqrt[4]{12}\)

\(18>12\Rightarrow \sqrt[4]{18}>\sqrt[4]{12}\Rightarrow \sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)

23 tháng 6 2019

\(\sqrt{37}-\sqrt{15};2\)

\(\left(\sqrt{37}-\sqrt{15}\right)^2=37-2\sqrt{555}+15=52-2\sqrt{555}\)

\(2^2=4\)

xét \(52-2\sqrt{555}-4=48-2\sqrt{555}\)

SS:\(48;2\sqrt{555}\)

\(48^2=2304\)

\(\left(2\sqrt{555}\right)^2=2220\)

2304>2220=>\(\sqrt{37}-\sqrt{15}>2\)

23 tháng 6 2019

√24+√49 và 12

\(\left(\text{√ 24 + √ 49 }\right)^2=24+28\sqrt{6}+49=73+28\sqrt{6}\)

\(12^2=144\)

xét \(144-73-28\sqrt{6}=71-28\sqrt{6}\)

SS:\(71;28\sqrt{6}\)

\(71^2=5041\)

\(\left(28\sqrt{6}\right)^2=4704\)

5041>4704=>\(12>\sqrt{24}+\sqrt{49}\)

a) Ta có: \(\sqrt{14-2\sqrt{33}}\)

\(=\sqrt{11-2\cdot\sqrt{11}\cdot\sqrt{3}+3}\)

\(=\sqrt{\left(\sqrt{11}-\sqrt{3}\right)^2}\)

\(=\left|\sqrt{11}-\sqrt{3}\right|\)

\(=\sqrt{11}-\sqrt{3}\)(Vì \(\sqrt{11}>\sqrt{3}\))

b) Ta có: \(\sqrt{12-2\sqrt{35}}\)

\(=\sqrt{7-2\cdot\sqrt{7}\cdot\sqrt{5}+5}\)

\(=\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}\)

\(=\left|\sqrt{7}-\sqrt{5}\right|\)

\(=\sqrt{7}-\sqrt{5}\)(Vì \(\sqrt{7}>\sqrt{5}\))

c) Ta có: \(\sqrt{16-2\sqrt{55}}\)

\(=\sqrt{11-2\cdot\sqrt{11}\cdot\sqrt{5}+5}\)

\(=\sqrt{\left(\sqrt{11}-\sqrt{5}\right)^2}\)

\(=\left|\sqrt{11}-\sqrt{5}\right|\)

\(=\sqrt{11}-\sqrt{5}\)(Vì \(\sqrt{11}>\sqrt{5}\))

d) Ta có: \(\sqrt{14-6\sqrt{5}}\)

\(=\sqrt{9-2\cdot3\cdot\sqrt{5}+5}\)

\(=\sqrt{\left(3-\sqrt{5}\right)^2}\)

\(=\left|3-\sqrt{5}\right|\)

\(=3-\sqrt{5}\)(Vì \(3>\sqrt{5}\))

e) Ta có: \(\sqrt{17-12\sqrt{2}}\)

\(=\sqrt{9-2\cdot3\cdot2\sqrt{2}+8}\)

\(=\sqrt{\left(3-2\sqrt{2}\right)^2}\)

\(=\left|3-2\sqrt{2}\right|\)

\(=3-2\sqrt{2}\)(Vì \(3>2\sqrt{2}\))