Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TL:
\(B=2x^2+y^2-2xy-2x+3\)
\(=\left(x^2-2xy+y^2\right)+(x^2-2x+1)+2\)
\(=\left(x-y\right)^2+\left(x-1\right)^2+2\ge2\forall x;y\)
\(D=\left(x+8\right)^4+\left(x+6\right)^4\ge0\forall x\)
Dấu"=" xảy ra<=> \(\hept{\begin{cases}\left(x+8\right)^4=0\\\left(x+6\right)^4=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-8\\x=-6\end{cases}}\)
a, Thay x=-1 vào biểu thức A ta có:
\(A=2\left(-1\right)^2+\left(-1\right)+1\)
\(A=2.1+\left(-1\right)+1\)
\(A=2\)
Thay \(x=\dfrac{1}{4}\) vào biểu thức A ta có:
\(A=2\left(\dfrac{1}{4}\right)^2+\dfrac{1}{4}+1\)
\(A=2.\dfrac{1}{16}+\dfrac{1}{4}+1\)
\(A=\dfrac{1}{8}+\dfrac{1}{4}+1\)
\(A=\dfrac{1}{8}+\dfrac{2}{8}+1\)
\(A=\dfrac{11}{8}\)
b, Thay x=-1; y=3 vào biểu thức B ta có:
\(B=\left(-1\right)^2.3^2+\left(-1\right).3+\left(-1\right)^3+3^3\)
\(B=1.9-3-1+27\)
\(B=2+27\)
\(B=29\)
c, Thay x=-1 vào biểu thức C ta có:
\(C=\left(-1\right)^2+\left(-1\right)^4+\left(-1\right)^6+\left(-1\right)^8+...+\left(-1\right)^{100}\)
\(C=1^4+1^6+1^8+1^9+...+1^{100}\)
\(C=100\)
d, Thay x+y=3; xy=-5 vào biểu thức D ta có:
\(D=3.\left(x+1\right).\left(y+1\right)\)
\(D=3.\left[\left(x.y\right)+1\right]\)
\(D=3.\left[\left(-5\right)+1\right]\)
\(D=3.\left(-4\right)\)
\(D=-12\)
Tích mình nha!!!
Ta có:
\(A+B+C=x^2y+xy^2+xy\)
\(=xy.\left(x+y+1\right)\)
mà theo bài ra \(x+y=-1\) nên
\(A+B+C=xy.\left(-1+1\right)=xy.0=0\)
Vậy \(A+B+C=0\) (đpcm)
Chúc bạn học tốt!!!
Ta có: \(A+B+C=x^2y+xy^2+xy\)
\(=xy\left(x+y+1\right)=xy\left(-1+1\right)=0\)
\(\Rightarrowđpcm\)
a: \(A=4-4.2\left(15.187+4.813\right)+1.16\)
\(=4-4.2\cdot20+1.16\)
\(=5.16-84=-78.84\)
b: \(B=13.14-4.59=8.55\)
c: \(C=3.5x^2-0.4xy+y^2\)
Trường hợp 1: x=0,5 và y=1,5
\(C=3.5\cdot0.5^2-0.4\cdot0.5\cdot1.5+1.5^2=2.825\)
Trường hợp 2: x=-0,5 và y=1,5
\(C=3.5\cdot0.5^2+0.4\cdot0.5\cdot1.5+1.5^2=3.425\)