Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1995x1997-1}{1996x1995+1994}\)
= \(\frac{3984015-1}{3982020+1994}\)
= \(\frac{3984014}{3984014}\)
= \(\frac{1}{1}\)
= \(1\)
Aswer : \(1\)
và cả câu này nữa
\(\frac{399x45+55x399}{1995x1996-1991x1995}\)
\(\frac{1996\cdot1995-996}{1000+1996\cdot1994}\)
\(=\frac{1996\cdot\left(1994+1\right)-996}{1000+1996\cdot1994}\)
\(=\frac{1996\cdot1994+1996-996}{1000+1996\cdot1994}\)
\(=\frac{1996\cdot1994+1000}{1000+1996\cdot1994}=1\)
Dạng toán: Tính nhanh ( vận dụng tính chất kết hợp phân phối giữa phép nhân và phép cộng)
Chúc em học tốt!
\(\frac{1996.1995-996}{1000+1996.1994}=\frac{1996.\left(1994+1\right)-996}{1000+1996.1994}=\frac{1996.1994+1996-996}{1000+1996.1994}\)
\(=\frac{1996.1994+1000}{1000+1996.1994}=1\)
ttttttttttttttttttttttttttttttttttttttttttiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiccccccccccccccccccccccccccckkkkkkkkkkkkkkkkkkkkkkkkk
-iktotpyio[hggjyujhjky,,yk.kij,buuuuuuuuuuuu48444i8
\(\frac{1995.1994-1}{1993.1995+1994}=\frac{1995\left(1993+1\right)-1}{1995.1993+1994}\)
\(=\frac{1995.1993+1995.1-1}{1995.1993+1994}=\frac{1995.1993+1994}{1995.1993+1994}\)
=1
\(\frac{1993\times1995+1994}{1994\times1995-1}=\frac{1993\times1995+1994}{1993\times1995+1995-1}=\frac{1993\times1995+1994}{1993\times1995+1994}=1\)
\(\frac{1993.1995+1994}{1994.1995-1}=\frac{1993.1995+1995-1}{1994.1995-1}=\frac{1995\left(1993+1\right)-1}{1994.1995-1}=\frac{1994.1995-1}{1994.1995-1}=1\)
\(B=\)\(\frac{3+33+333+3333+33333}{4+44+444+4444+44444}\)
\(B=\frac{3.1+3.11+3.111+3.1111+3.11111}{4.1+4.11+4.111+4.1111+4.11111}\)
\(B=\frac{3.\left(1+11+111+1111+11111\right)}{4.\left(1+11+111+1111+11111\right)}\)
\(B=\frac{3}{4}\)
\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\)
\(A.2=\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right).2\)
\(A.2=\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\)
=>\(A.2-A=\left(\frac{2}{3}+\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}\right)-\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{12}+\frac{1}{24}+\frac{1}{48}+\frac{1}{96}+\frac{1}{192}\right)\)
\(A=\frac{2}{3}-\frac{1}{192}\)
\(A=\frac{127}{192}\)
\(\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
Đặt \(C=\frac{1995}{1997}.\frac{1990}{1993}.\frac{1997}{1994}.\frac{1993}{1995}.\frac{997}{995}\)
\(C=\frac{1995.1990.1997.1993.997}{1997.1993.1994.1995.995}\)
\(C=\frac{1990.997}{1994.995}\)
\(C=\frac{995.2+997}{997.2+995}=1\)
\(B=\frac{3+33+333+3333+ 33333}{4+44+444+4444+44444}\)
\(\Rightarrow B=\frac{3\left(1+11+111+1111+11111\right)}{4\left(1+11+111+1111+11111\right)}=\frac{3}{4}\)
\(\frac{1997x1996-995}{1995x1997+1002}=\frac{1997x\left(1995+1\right)-995}{1995x1997+1002}\)
\(=\frac{1997x1995+1997x1-995}{1995x1997+1002}\)
\(=\frac{1997x1995+1997-995}{1995x1997+1002}\)
\(=\frac{1997x1995+1002}{1995x1997+1002}=1\)
Ta có :
\(\frac{1995.1997-1}{1996.1995+1994}\)
\(=\frac{1995.\left(1996+1\right)-1}{1995.1996+1994}\)
\(=\frac{1995.1996+1995-1}{1995.1996+1994}\)
\(=\frac{1995.1996+1994}{1995.1996+1994}=1\)
Ủng hộ mk nha !!! ^_^
\(\frac{1995x1997-1}{1996x1995+1994}\)
\(=\frac{1995x1996+1995-1}{1996x1995+1994}\)
\(=\frac{1995x1996+1994}{1996x1995+1994}=1\)