Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Co :
1/1.2 - 1/2.3 = 2/1.2.3
1/2.3 - 1/3.4 = 2/2.3.4
...
1/37.38 - 1/38.39 = 2/37.38.39
=> 2M = 2/1.2.3 + 2/2.3.4 + ... + 2/37.38.39
=> 2M = 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... + 1/37.38 - 1/38.39
=> 2M = 1/2 - 1/1482
=> 2M = 370/741
=> M = 185/741
B ) A = 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^8
3A = 1 + 1/3 + 1/3^2 + ... + 1/3^7
3A - A = ( 1 + 1/3 + 1/3^2 + ... + 1/3^7 ) - ( 1/3 + 1/3^2 + 1/3^3 + ... + 1/3^8 )
2A = 1 - 1/3^8
A = ( 1 - 1/3^8 ) / 2
a) \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\)
\(\Rightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\right)\)(áp dụng quy tắc dấu ngoặt )
\(3A-A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-...-\frac{1}{3^8}\)
\(3A-A=1+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{3^2}-\frac{1}{3^2}\right)+...+\left(\frac{1}{3^7}-\frac{1}{3^7}\right)-\frac{1}{3^8}\)
\(\Rightarrow2A=1+0+0...+0-\frac{1}{3^8}\)
\(2A=1-\frac{1}{3^8}\)
\(2A=\frac{3^8-1}{3^8}\)
\(A=\frac{3^8-1}{3^8}\div2=\frac{3^8-1}{3^8}.\frac{1}{2}=\frac{3^8-1}{3^8.2}\)
b) \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{100.101}\)
\(\Rightarrow B=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}\)(áp dụng quy tắc dấu ngoặt )
\(B=\frac{1}{1}-\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}-\frac{1}{3}\right)-...-\left(\frac{1}{100}-\frac{1}{100}\right)-\frac{1}{101}\)
\(B=\frac{1}{1}-0-0-0...-0-\frac{1}{101}\)
\(B=\frac{1}{1}-\frac{1}{101}\)
\(B=\frac{100}{101}\)
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\)
\(\Rightarrow3A=3\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\right)\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\)
\(\Rightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\right)\)
\(\Rightarrow2A=1-\frac{1}{3^8}\)
\(\Rightarrow A=\frac{1-\frac{1}{3^8}}{2}\)
\(\Rightarrow A=\frac{3280}{6561}\)
Vậy \(A=\frac{3280}{6561}\)
\(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\)
\(\Rightarrow3A=1+\frac{1}{3}+...+\frac{1}{3^7}\)
\(\Rightarrow3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^7}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\right)\)
\(\Rightarrow2A=1-\frac{1}{3^8}\)
\(\Rightarrow A=\frac{1-\frac{1}{3^8}}{2}\)
Chúc bạn học tốt !!!
\(2C=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{39-37}{37.38.39}\)
\(2C=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{37.38}-\frac{1}{38.39}\)
\(2C=\frac{1}{1.2}-\frac{1}{38.39}\)
\(C=\frac{617}{1482}\)
\(3D=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\)
\(3D-D=1-\frac{1}{3^8}\)
\(D=\frac{1}{2}-\frac{1}{2.3^8}\)
Ta có:\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{37.38}-\frac{1}{38.39}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{38.39}\right)\)
b,\(D=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^8}\)
\(\Rightarrow3D=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^7}\)
\(\Rightarrow2D=1-\frac{1}{3^8}\)
\(\Rightarrow D=\frac{3^8-1}{3^8}:2\)
a. \(\frac{-3}{7}+\frac{15}{26}-\left(\frac{2}{13}-\frac{3}{7}\right)=\frac{-3}{7}+\frac{15}{26}-\frac{2}{13}+\frac{3}{7}=\frac{15}{13.2}-\frac{2}{13}=\frac{15}{13.2}-\frac{2.2}{13.2}=\frac{15-4}{26}=\frac{11}{26}\)
C. \(\frac{-11}{23}.\frac{6}{7}+\frac{8}{7}.\frac{-11}{23}-\frac{1}{23}=\frac{1}{23}.\left(-11.\frac{6}{7}-11.\frac{8}{7}-1\right)=\frac{1}{23}.\left(-22-1\right)=\frac{1}{23}.\left(-23\right)=-1\)
\(S=1+\frac{1}{\left(\frac{3.2}{2}\right)}+\frac{1}{\left(\frac{4.3}{2}\right)}+\frac{1}{\left(\frac{5.4}{2}\right)}+...+\frac{1}{\left(\frac{9.8}{2}\right)}\)
\(=1+2\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{8.9}\right)\)
\(=1+2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{8}-\frac{1}{9}\right)\)
\(=1+2\left(\frac{1}{2}-\frac{1}{9}\right)\)
\(=1+2.\frac{7}{18}\)
\(=1\frac{7}{9}\)
Chúc bn học tốt nhé!!! :)
a) \(\frac{-3}{7}+\frac{15}{26}-\left(\frac{2}{13}-\frac{3}{7}\right)=\frac{-3}{7}+\frac{15}{26}-\frac{2}{13}+\frac{3}{7}=\left(\frac{-3}{7}+\frac{3}{7}\right)+\left(\frac{15}{26}-\frac{2}{13}\right)\)
\(=\frac{15-4}{26}=\frac{11}{26}\)
c) \(\frac{-11}{23}.\frac{6}{7}+\frac{8}{7}.\frac{-11}{23}-\frac{1}{23}=\frac{-11}{23}.\left(\frac{6}{7}+\frac{8}{7}\right)-\frac{1}{23}\)
\(=\frac{-11}{23}.2-\frac{1}{23}=\frac{-22-1}{23}=\frac{-23}{23}=-1\)
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+....+\frac{1}{3^8}\)
\(=>3A=1+\frac{1}{3}+\frac{1}{3^2}+.....+\frac{1}{3^7}\)
\(=>3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\right)\)
\(=>2A=1-\frac{1}{3^8}=>A=\left(1-\frac{1}{3^8}\right):2\)