Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/2 + 2/3 + 3/4 + 4/5 + 5/6 + 6/7 + 7/8 + 8/9 + ........+ 95/96 + 96/97 + 97/98 + 98/99 + 99/100 = ?
Số các số hạng là:
(2000 - 100) : 1 + 1 = 1901
Tổng là:
(2000 + 100) x 1901 : 2 = 1996050
Đáp số : 1996050
=(1-2-3+4)+(5-6-7+8)+...+(97-98-99+100)
=0+0+...+0
=0
~ mk~
1-2-3+4-5-6-7+8-...+97-98-99+100
= (1-2-3+4) + (5-6-7+8) +...+(97-98-99+100)
= 0+0+...+0
=0
\(E=1+2-3-4+5+6-7-....+97+98-99\)
\(E=\left(1+2-3-4\right)+\left(5+6-7-8\right)+..+\left(97+98-99-100\right)\)( có \(\frac{100}{2}=25\)nhóm)
\(E=-4+\left(-4\right)+....+\left(-4\right)\)( có \(25\)số )
\(E=\left(-4\right).25=-100\)
\(E=1+2-3-4+.............+98-99-100\)
\(E=1+\left(2-3-4+5\right)+\left(6-7-8+9\right)+...+\left(98-99-100\right)\)
\(E=1+0+0+...+\left(-101\right)\)
\(E=-100\)
\(D=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{19}-\dfrac{1}{20}=\dfrac{1}{2}-\dfrac{1}{20}=\dfrac{9}{20}\)
\(E=\dfrac{1}{99}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{98\cdot99}\right)\)
\(=\dfrac{1}{99}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{99}-1+\dfrac{1}{99}=\dfrac{2}{99}-1=-\dfrac{97}{99}\)
Bài 1:
a: \(2P=2^{101}-2^{100}+2^{98}-2^{97}+...+2^3-2^2\)
=>\(3P=2^{101}-2\)
hay \(P=\dfrac{2^{101}-2}{3}\)
b: \(5Q=5^{101}-5^{100}+5^{99}-5^{98}+...+5^3-5^2+5\)
=>\(6Q=5^{101}+1\)
hay \(Q=\dfrac{5^{101}+1}{6}\)
giup oi
\(\Leftrightarrow S=1-2+3-4+5-6+....97-98+99\)
\(\Leftrightarrow S=-1+-1+-1+....+-1+99\)
\(\Leftrightarrow S=-49+99\)
\(\Rightarrow S=50\)
Vậy: \(S=50\)