Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Phương trình hoành độ giao điểm : x + 1 x - 3 = x - 5 ⇔ x ≠ 3 x 2 - 9 x + 14 = 0 ⇔ x = 7 ⇒ y = 2 x = 2 y ⇒ = - 3
Do đó A 7 ; 2 ; B 2 ; - 3 ⇒ d = d 1 + d 2 = 2 + 3 = 5 .
Đáp án D
Nhận thấy d 1 ⊥ d 2 . Gọi α là mặt phẳng cách đều d 1 và d 2 nên cả hai đường thẳng đều song song với mặt phẳng α . Khi đó, vector pháp tuyến a → của mặt phẳng α cùng phương với vector u 1 → , u 2 → (với u 1 → , u 2 → lần lượt là các vec tơ chỉ phương của hai đường thẳng d 1 , d 2 ).
+ Chọn a → = 1 ; 5 ; 2 , suy ra phương trình mặt phẳng α có dạng
α : x + 5 y + 2 z + d = 0
Chọn A 2 ; 1 ; 0 và B 2 ; 3 ; 0 lần lượt thuộc đường thẳng d 1 và d 2 , ta có
d A ; α = d B ; β ⇒ d = − 12 ⇒ α : x + 5 y + 2 z − 12 = 0
+ Khoảng cách từ điểm M − 2 ; 4 ; − 1 đến mặt phẳng α : d M ; α = 2 30 15
Chọn C.
Phương pháp: Dùng công thức tính khoảng cách từ điểm đến đường thẳng.
Cách giải:
ta có pt đường cao kẻ từ B:(d1) x+3y-5=0
vì AC _|_ (d1) và AC đi qua C(-1; -2)
=> pt AC: 3(x+1) -(y+2) =0
<=> 3x -y + 1=0
ta có A là giao điểm của AC và đg trung tuyến (d2) kẻ từ A
=> A là nghiệm của hệ:
{ 5x+y-9=0
{ 3x -y + 1=0
<=>
x=1 ; y=4
=> A( 1;4)
Vì B ∈ (d1) => B(5- 3y; y)
gọi I là trung điểm BC => I ∈ (d2)
Vì I là trung điểm BC
=>
{ 2xI = xB + xC
{ 2yI = yB + yC
<=>
{ xI= (5-3y-1)/2 = (4-3y)/2
{ yI= (y -2)/2
Vì I ∈ (d2)
=> 5(4-3y)/2 + (y -2)/2 -9 =0
<=> y= 0
=> B( 5; 0)
Vậy A( 1;4) và B( 5; 0)
Ta có pt đường cao kẻ từ B: (d1) x+3y-5=0
Vì AC _|_ (d1) và AC đi qua C(-1; -2)
=> pt AC: 3(x+1) -(y+2) =0
<=> 3x -y + 1=0
Ta có A là giao điểm của AC và đường trung tuyến (d2) kẻ từ A
=> A là nghiệm của hệ:
{ 5x+y-9=0
{ 3x -y + 1=0
<=>
x=1 ; y=4
=> A( 1;4)
Vì B ∈ (d1) => B(5- 3y; y)
Gọi I là trung điểm BC => I ∈ (d2)
Vì I là trung điểm BC
=>
{ 2xI = xB + xC
{ 2yI = yB + yC
<=>
{ xI= (5-3y-1)/2 = (4-3y)/2
{ yI= (y -2)/2
Vì I ∈ (d2)
=> 5(4-3y)/2 + (y -2)/2 -9 =0
<=> y= 0
=> B( 5; 0)
Vậy A( 1;4) và B( 5; 0)
câu hỏi từ 4 năm trước của e nó vẫn ko ai trả lời =(