Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\frac{131.145+100}{45-132.145}\)
\(=\frac{131-\frac{100}{145}}{\frac{45}{145}-132}\)
\(=\frac{131-\frac{20}{29}}{\frac{9}{29}-132}\)
\(=\frac{131\frac{-20}{29}}{-132\frac{9}{29}}\)
\(\frac{131.145+100}{45-132.140}=\frac{132.145-45}{45-132.140}=-1\)
\(\frac{49^6.5-7^{11}}{\left(-7\right)^{10}.5+2.49^5}=\frac{7^{11}.7-7^{11}.1}{7^{10}.5+2.7^{10}}=\frac{7^{11}.\left(7-1\right)}{7^{10}.\left(5+2\right)}=\frac{7^{11}.6}{7^{11}}=6\)
\(=\left(-\frac{1}{4}-\frac{5}{3}\right)+\frac{7}{33}+\frac{15}{12}-\frac{6}{11}+\frac{48}{49}\)
\(=-\frac{23}{12}+\frac{7}{33}+\frac{15}{12}-\frac{6}{11}+\frac{48}{49}\)
\(=\left(-\frac{23}{12}+\frac{15}{12}\right)+\left(\frac{7}{33}-\frac{6}{11}\right)+\frac{48}{49}\)
\(=-\frac{2}{3}-\frac{1}{3}+\frac{48}{49}\)
\(=-\frac{3}{3}+1-\frac{1}{49}\)
\(=-1+1-\frac{1}{49}\)
\(=-\frac{1}{49}\)
C1:
= \(-\frac{1}{4}+\frac{7}{33}-\frac{5}{3}+\frac{15}{12}-\frac{6}{11}+\frac{48}{49}=\left(-\frac{1}{4}+\frac{15}{12}\right)+\left(\frac{7}{33}-\frac{5}{3}-\frac{6}{11}\right)+\frac{48}{49}\)
=\(1-2+\frac{48}{49}=\frac{48}{49}-1=-\frac{1}{49}\)
\(\frac{1}{2014}-\frac{1}{2014.2013}-\frac{1}{2013.2012}-...-\frac{1}{3.2}-\frac{1}{2.1}.\)
\(=-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2012.2013}+\frac{1}{2013.2014}\right)+\frac{1}{2014}\)
\(=\frac{1}{2014}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)
\(=\frac{1}{2014}-1+\frac{1}{2014}=\frac{1}{1007}-1=\frac{-1006}{1007}\)
....
\(=\frac{8}{9}-\frac{1}{8.9}-\frac{1}{7.8}-\frac{1}{6.7}-\frac{1}{5.6}-\frac{1}{4.5}-\frac{1}{3.4}-\frac{1}{2.3}-\frac{1}{1.2}\)
\(=\frac{8}{9}-\frac{1}{8}+\frac{1}{9}-\frac{1}{7}+\frac{1}{8}-\frac{1}{6}+\frac{1}{7}-\frac{1}{5}+\frac{1}{6}-...-1+\frac{1}{2}\)= 0
Vì \(\frac{1}{n.\left(n+1\right)}=\frac{\left(n+1\right)-n}{n.\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)
trả lời:
\(\left(\frac{9}{14}\right)^2.\left(-\frac{7}{3}\right)^3=\frac{3^2}{2^2.7^2}.\frac{-7^3}{3^3}\)
=\(\frac{3}{2^2}.\frac{-7}{3}=-\frac{7}{4}\)
\(\left(\frac{9}{14}\right)^2\cdot\left(-\frac{7}{3}\right)^3=\left(\frac{3\cdot3}{7\cdot2}\cdot\frac{-7}{3}\right)^2\cdot\frac{-7}{3}=\frac{9}{4}\cdot-\frac{7}{3}=\frac{-21}{4}\)
\(\frac{3^6.3^6}{\left(3.27\right)^3}\)
\(\frac{3^6.3^6}{3^3.3^9}\)
\(=\frac{3^{12}}{3^{12}}=1\)