Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:\(\frac{1}{5.6}\)<\(\frac{1}{5^2}<\frac{1}{4.5}\)
\(\frac{1}{6.7}\) \(\frac{1}{6^2}<\frac{1}{5.6}\)....
\(\frac{1}{100,101}<\frac{1}{100^2}<\frac{1}{99.100}\)
=>\(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{100.101}<\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}<\frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
<=>\(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{100}-\frac{1}{101}<\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100^2}<\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{5}-\frac{1}{101}
=\(\frac{1}{6}
Đặt :
A=1/5^2+1/6^2+...+1/100^2
Ta có:
A<1/4.5+1/5.6+...+1/99.100=1/4-1/5+1/5-1/6+...+1/99-1/100=1/4-1/100<1/4
Đúng thì k nha!
Ta có:
A>1/5.6+1/6.7+...+1/100.101=1/5-1/6+1/6-1/7+....+1/100+1/101>1/6
Ta có: \(\frac{1}{5^2}< \frac{1}{4.5}\)
\(\frac{1}{6^2}< \frac{1}{5.6}\)
\(\frac{1}{7^2}< \frac{1}{6.7}\)
................
\(\frac{1}{100^2}< \frac{1}{99.100}\)
=> \(C< \frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{99.100}\)
=> \(C< \frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}\)
=> \(C< \frac{1}{4}-\frac{1}{100}< \frac{1}{4}\) (1)
Lại có: \(\frac{1}{5^2}>\frac{1}{5.6}\)
\(\frac{1}{6^2}>\frac{1}{6.7}\)
\(\frac{1}{7^2}>\frac{1}{7.8}\)
..................
\(\frac{1}{100^2}>\frac{1}{100.101}\)
=> \(C>\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+....+\frac{1}{100.101}\)
=> \(C>\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{101}\)
=> \(C>\frac{1}{5}-\frac{1}{101}>\frac{1}{6}\) (2)
Từ (1) và (2) suy ra \(\frac{1}{6}< C< \frac{1}{4}\)(đpcm)
a/(Sửa đề bài) A= 1/2 + 2/22 + 3/23 + 4/24 +..+ 100/2100 => 1/2A = 1/22 + 2/23 + 3/24 +..+ 100/2101 => A - 1/2A = 1/2 + 2/22 +..+ 100/2100 - 1/22 - 2/23 -..- 100/2101 => 1/2A = 1/2 + 1/22 + 1/23 +..+ 1/2100 - 100/2101 Gọi riêng cụm (1/2 + 1/22 +..+ 1/2100) là B => 2B = 1 + 1/2 + 1/22 +..+ 1/299 => 2B-B = B = 1+ 1/2 +1/22 +..+ 1/299 - 1/2 - 1/22 -..- 1/2100 = 1 - 1/2100 => 1/2A = 1 - 1/2100 - 100/2101 Có 1/2A < 1 => A < 2 =>ĐPCM b/ => 1/3C = 1/32 + 2/33 + 3/34 +..+ 100/3101 => C - 1/3C = 2/3C = 1/3 + 2/32 +..+ 100/3100 - 1/32 - 2/33 -..- 100/3101 = 1/3 + 1/32 + 1/33 +..+ 1/3100 - 100/3101 Gọi riêng cụm (1/3 + 1/32 +..+ 1/3100) là D => 3D = 1 + 1/3 +..+ 1/399 => 3D - D = 2D = 1 + 1/3 +..+1/399 - 1/3 -1/32 -..- 1/3100 = 1 - 1/3100 => 2/3C *2 = 4/3C = 1 - 1/3100 - 200/3101 Có 4/3C < 1 => C<3/4 => ĐPCM Tạm thời thế đã, giải tiếp đc con nào mình sẽ gửi sau :)
a) ta có :1/5^2<1/4.5=1/4-1/5
1/6^2<1/5.6=1/5-1/6
.................
1/100^2<1/99.100=1/99-1/100
=>1/5^2+1/6^2+1/7^2+......+1/100^2 <1/4-1/100=6/25<1/4(1)
ta lại có:1/5^2>1/5.6=1/5-1/6
1/6^2>1/6.7=1/6-1/7
.................
1/100^2>1/100.101=1/100-1/101
=>1/5^2+1/6^2+1/7^2+......+1/100^2>1/5-1/101=96/505>1/6(2)
từ (1)(2) suy ra 1/6<1/5^2+1/6^2+1/7^2+......+1/100^2 < 1/4
b)ta có:1/11+1/12+....+1/70=(1/11+1/12+...+1/20)+(1/21+1/22+...+1/30)+(1/31+1/32+...+1/40)+(1/41+1/42+...+1/50)+(1/51+1/52+...+1/60)+(1/61+1/62+...+1/70)>(1/20+1/20+...+1/20)(10 phân số 1/20)+(1/30+1/30+...+1/30)(10 phân số 1/30)+(1/40+1/40+...+1/40)(10 phân số 1/40)+(1/50+1/50+...+1/50)(10 phân số 1/50)+(1/60+1/60+...+1/60)(10 phân số 1/60)=1/2+1/3+1/4+1/5+1/6=29/20>4/3(1)
ta lại có:1/11+1/12+....+1/70=(1/11+1/12+...+1/20)+(1/21+1/22+...+1/30)+(1/31+1/32+...+1/40)+(1/41+1/42+...+1/50)+(1/51+1/52+...+1/60)+(1/61+1/62+...+1/70)<(1/11+1/11+...+1/11)(10 phân số 1/11)+(1/21+1/21+...+1/21)(10 phân số 1/21)+(1/31+1/31+...+1/31)(10 phân số 1/31)+(1/41+1/41+...+1/41)(10 phân số 1/41)+(1/51+1/51+...+1/51)(10 phân số 1/51)+(1/61+1/61+...+1/61)(10phân số 1/61) =10/11+10/21+10/31+10/41+10/51+10/61=2,311777327<5/2(2)
từ (1)(2)=>4/3<1/11+1/12+....+1/70<5/2
Ta có:
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
\(=\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}\right)+\left(\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}\right)\)
Ta có:\(\frac{1}{51}>\frac{1}{52}>...>\frac{1}{75};\frac{1}{76}>\frac{1}{77}>...>\frac{1}{100}\)
Tự giải tiếp hay nhờ thầy cô giảng tiếp đi nha bn, mỏi tay nên ko thể làm đc nữa !!
Ta có:
\(\frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}>\frac{1}{25}+\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{100.101}\)
\(=\frac{1}{25}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{100}-\frac{1}{101}\)
\(=\frac{1}{25}+\frac{1}{6}-\frac{1}{101}>\frac{1}{6}+\frac{1}{25}-\frac{1}{100}=\frac{1}{6}+\frac{3}{100}>\frac{1}{6}\left(1\right)\)
\(\frac{1}{5^2}+\frac{1}{6^2}+...+\frac{1}{100}< \frac{1}{4.5}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}=\frac{1}{4}-\frac{1}{100}< \frac{1}{4}\left(2\right)\)
Từ (1) và (2) suy ra:\(\frac{1}{6}< \frac{1}{5^2}+\frac{1}{6^2}+\frac{1}{7^2}+...+\frac{1}{100^2}< \frac{1}{4}\left(đpcm\right)\)
đạt 1/52+.........+1/1002=S
1/52>1/5*6
.....................
1/1002>1/100*101
=>S>1/5*6+.............+1/100*101=1/5-1/6+....+1/100-1/101=1/5-1/101=96/505>96/576=1/6
vậ S>1/6
1/52<1/4*5
.....................
1/1002<1/99*100
=>S<1/4*5+................+1/99*100=1/4-1/5+.....+1/99-1/100=1/4-1/100=6/25<6/24=1/4
Vậy 1/6<S<1/4
Có thể mình hơi phũ tí nhưng mình bảo đảm một thế kỉ sau sẽ không ai ngồi giải hết đống bài này cho bạn đâu, hỏi từng câu thôi
P/s: chắc bạn đánh mỏi tay lắm
Cho \(Q=\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\)
Ta có: \(R=\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{99.100}\)
\(R=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
\(R=\dfrac{1}{3}-\dfrac{1}{100}\)
\(\Rightarrow R=\dfrac{1}{3}-\dfrac{1}{100}< \dfrac{1}{3}\) (a)
Và \(Q=\dfrac{1}{4^2}+\dfrac{1}{5^2}+\dfrac{1}{6^2}+\dfrac{1}{7^2}+...+\dfrac{1}{100^2}< R=\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{99.100}\) (b)
Từ (a) và (b) \(\Rightarrow Q< R< \dfrac{1}{3}\)
1/4^2<1/3*4
1/5^2<1/4*5
...
1/100^2<1/99*100
=>A<1/3-1/4+1/4-1/5+...+1/99-1/100=97/300<1/3