Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì x và y là hai địa lượng tỉ lệ nghịch
\(y=\frac{a}{x}=a=x.y\)
Thay \(a=2.4\)
Vậy \(a=8\)
b) \(x=\frac{a}{y}\)
c) Vì x là y là hai đại lượng tỉ lệ nghịch
\(x=\frac{a}{y}=x=\frac{a}{y}\)
Thay \(x=\frac{8}{-1}\); Thay \(x=\frac{8}{2}\)
\(\hept{\begin{cases}x=4\\x=8\end{cases}}\)
Q = x2 + y2 + z2 + x2 – y2 + z2 + x2 + y2 - z2
= x2 + x2 + x2 + y2 + y2 - y2 + y2 + z2 + z2 - z2
= 3x2 + y2 + z2
\(x^2+y^2+z^2+x^2-y^2+z^2+x^2+y^2-z^2\)
\(=x^2+x^2+x^2+y^2+y^2-y^2+z^2+z^2-z^2\)
\(=3x^2+y^2+z^2\)
a) A + x2 - 4xy2 + 2xz - 3y2 = 0
=> A = -x2 + 4xy2 - 2xz + 3y2
b) B + 5x2 - 2xy = 6x2 + 9xy - y2
=> B = 6x2 + 9xy - y2 - 5x2 + 2xy= x2 + 11xy - y2
c) 3xy - 4y2 - A = x2 - 7xy + 8y2
=> A = 3xy - 4y2 - x2 + 7xy - 8y2 = -12y2 + 10xy - x2
Trả lời:
a, A + ( x2 - 4xy2 + 2xz - 3y2 ) = 0
=> A = - ( x2 - 4xy2 + 2xz - 3y2 ) = - x2 + 4xy2 - 2xz + 3y2
b, B + ( 5x2 - 2xy ) = 6x2 + 9xy - y2
=> B = 6x2 + 9xy - y2 - ( 5x2 - 2xy ) = 6x2 + 9xy - y2 - 5x2 + 2xy = x2 + 11xy - y2
c, ( 3xy - 4y2 ) - A = x2 - 7xy + 8y2
=> A = 3xy - 4y2 - ( x2 - 7xy + 8y2 ) = 3xy - 4y2 - x2 + 7xy - 8y2 = 10xy - 12y2 - x2
d, B + ( 4x2y + 5y2 - 3xz + z2 ) = x2 + 11xy - y2 + 4x2y + 5y2 - 3xz + z2 = x2 + 11xy + 4y2 + 4x2y - 3xz + z2
a,f(1/2)=5-2*(1/2)=5-1=4
f(3)=5-2x3=5-6=-1
b,Với y=5 thì 5-2x=5
2x=5-5
2x=0
x=0:2=0
Vậy x=0
Với y=-1 thì 5-2x=-1
2x=5-(-1)
2x=5+1
2x=6
x=6:2=3
Vậy x=3
a/ Xét tam giác BEM và tam giác CFM có:
góc BEM = góc CFM = 900 (GT)
BM = MC (AM là trung tuyến t/g ABC)
góc B = góc C (t/g ABC cân)
=> tam giác BEM = tam giác CFM
b/ Ta có: AB = AC (t/g ABC cân)
BE = CF (t/g BEM = t/g CFM)
=> AE = AF
Xét hai tam giác vuông AEM và AFM có:
AE = AF (cmt)
AM: cạnh chung
=> tam giác AEM = tam giác AFM
=> ME = MF
Ta có: AE = AF; ME = MF
=> AM là trung trực của EF
c/ Xét hai tam giác vuông ABD và ACD có:
AB = AC (GT)
AD: cạnh chung
=> tam giác ABD = tam giác ACD
=> BD = CD
Ta có: AB = AC; BD = CD
=> AD là trung trực của EF
Ta có: AM là trung trực của EF
AD là trung trực của EF
=> AM trùng AD
Vậy A;M;D thẳng hàng.
---> đpcm.
Hình vẽ:
A C B E K D
a/ Xét 2Δ vuông:ΔACE và ΔAKE có:
AE: chung
\(\widehat{CAE}=\widehat{KAE}\left(gt\right)\)
=> ΔACE = ΔAKE (ch-gn)
=> AC = AK (đpcm)
b/ Ta có: \(\widehat{CAE}=\widehat{KAE}=\dfrac{\widehat{CAB}}{2}=\dfrac{60^o}{2}=30^o\left(gt\right)\)
mà \(\widehat{B}=30^o\left(180^o-\widehat{C}-\widehat{CAB}\right)\)
=> \(\widehat{KAE}=\widehat{B}=30^o\)
=> \(\Delta EAB\) cân tại E
mà EK _l_ AB (gt)
=> EK cũng là đường trung tuyến của AB(t/c các đường troq Δ cân)
=> KA = KB (đpcm)
c/ Xét \(\Delta EAB\) có:
EK _l_ AB (gt) ; BD _l_ AE kéo dài (gt)
AC _l_ BE ké dài (gt)
=> EK, BD, AC đồng quy tại 1 điểm (đpcm)
đáp án ở đây bạn nha trừ câu c):
https://hoc24.vn/hoi-dap/question/59956.html
A B C G H
a) Ta có:
\(\Delta ABC\) cân tại A => Đường cao AH đồng thời cũng là đường trung tuyến
\(\Rightarrow BH=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Xét \(\Delta ABH\) vuông tại H, ta có:
\(AH^2+BH^2=AB^2\) ( Định lý Py-ta-go )
\(\Rightarrow AH^2=AB^2-BH^2=5^2-3^2=25-9=16\left(=\left(\pm4\right)^2\right)\)
\(\Rightarrow AH=4\left(cm\right)\) (AH>0)
Vậy BH=3 cm; AH=4 cm
Tham khảo hình bài làm đầy đủ :
Câu hỏi của Nguyễn Hoàng Bảo Nhi - Toán lớp 0 | Học trực tuyến
Chúc bn học tốt!
a) Thay f(1/2) vào hàm số ta có :
y=f(1/2)=5-2.(1/2)=4
Thay f(3) vào hàm số ta có :
y=f(3)=5-2.3=-1
b) y=5-2x <=> 5-2x=5
2x=5-5
2x=0
=> x=0
<=> 5-2x=-1
2x=5-(-1)
2x=6
=> x=3
a, f (1/2) = 5 - 2.1/2 = 4
f (3) = 5 - 2.3 = -1
b, y = 5 <=> 5 - 2x = 5
<=> x = 0
y = -1 <=> 5 - 2x = -1
<=> x = 3
_Hok tốt_
( sai thì thôi nha )
a) Thay x = 5,8 vào biểu thức, ta được:
4x + 3 = 4. 5,8 + 3 = 26,2
b) Thay y = 2 vào biểu thức, ta được:
y2 – 2y +1 = 22 – 2.2 + 1 = 1
c) Thay m = 5,4 và n = 3,2 vào biểu thức, ta được:
(2m+n).(m-n) = (2.5,4 + 3,2) . (5,4 – 3,2)= 14 . 2,2 = 30,8