Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\sqrt{7+\sqrt{45}}-\sqrt{7-\sqrt{45}}\)
\(=\dfrac{\sqrt{14+2\sqrt{45}}-\sqrt{14-2\sqrt{45}}}{\sqrt{2}}\)
\(=\dfrac{3+\sqrt{5}-3+\sqrt{5}}{\sqrt{2}}=\dfrac{2\sqrt{5}}{\sqrt{2}}=\sqrt{10}\)
b: \(=2\cdot\sqrt{80\sqrt{3}}-2\sqrt{5\sqrt{3}}-3\sqrt{20\sqrt{3}}\)
\(=\sqrt{\sqrt{3}}\left(2\cdot4\sqrt{5}-2\sqrt{5}-3\cdot2\sqrt{5}\right)\)
\(=\sqrt{\sqrt{3}}\cdot0=0\)
c: \(=\left(2-\sqrt{3}-6+2\sqrt{3}+8+2\sqrt{3}\right)\left(4-3\sqrt{3}\right)\)
\(=\left(4+3\sqrt{3}\right)\left(4-3\sqrt{3}\right)\)
=16-27=-11
1) \(\sqrt{12}\)+\(5\sqrt{3}-\sqrt{48}\)
= \(2\sqrt{3}+5\sqrt{3}-4\sqrt{3}\)
= (2+5-4).\(\sqrt{3}\)
= \(3\sqrt{3}\)
2)\(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)
= \(5\sqrt{5}+2\sqrt{5}-3.3\sqrt{5}\)
= \(5\sqrt{5}+2\sqrt{5}-9\sqrt{5}\)
= \(\left(5+2-9\right).\sqrt{5}\)
= -2\(\sqrt{2}\)
3)\(3\sqrt{32}+4\sqrt{8}-5\sqrt{18}\)
= \(3.4\sqrt{2}+4.2\sqrt{2}-5.3\sqrt{2}
\)
= 12\(\sqrt{2}\) \(+8\sqrt{2}\) \(-15\sqrt{2}\)
= \(\left(12+8-15\right).\sqrt{2}\)
= \(5\sqrt{2}\)
4)\(3\sqrt{12}-4\sqrt{27}+5\sqrt{48}\)
= \(3.2\sqrt{3}-4.3\sqrt{3}+5.4\sqrt{3}\)
= \(6\sqrt{3}-12\sqrt{3}+20\sqrt{3}\)
= \(\left(6-12+20\right).\sqrt{3}\)
= \(14\sqrt{3}\)
5)\(\sqrt{12}+\sqrt{75}-\sqrt{27}\)
= \(2\sqrt{3}+5\sqrt{3}-3\sqrt{3}\)
= \(\left(2+5-3\right).\sqrt{3}\)
= \(4\sqrt{3}\)
6) \(2\sqrt{18}-7\sqrt{2}+\sqrt{162}\)
= \(2.3\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= 6\(\sqrt{2}-7\sqrt{2}+9\sqrt{2}\)
= \(\left(6-7+9\right).\sqrt{2}\)
= 8\(\sqrt{2}\)
7)\(3\sqrt{20}-2\sqrt{45}+4\sqrt{5}\)
= \(3.2\sqrt{5}-2.3\sqrt{5}+4\sqrt{5}\)
= \(6\sqrt{5}-6\sqrt{5}+4\sqrt{5}\)
= \(4\sqrt{5}\)
8)\(\left(\sqrt{2}+2\right).\sqrt{2}-2\sqrt{2}\)
= \(\left(\sqrt{2}\right)^2+2\sqrt{2}-2\sqrt{2}\)
= 2
a: \(=\left(2\sqrt{7}+\sqrt{7}+2\sqrt{14}\right)\cdot\sqrt{7}-\left(51+14\sqrt{2}\right)\)
\(=3\sqrt{7}\cdot\sqrt{7}+2\sqrt{14}\cdot\sqrt{7}-51-14\sqrt{2}\)
\(=21-51=-30\)
b: \(=\dfrac{\sqrt{10}}{2}+\dfrac{\sqrt{10}-\sqrt{6}}{2}=\dfrac{2\sqrt{10}-\sqrt{6}}{2}\)
c: \(=\dfrac{\left(\sqrt{5}+\sqrt{3}\right)^2}{\sqrt{5}+\sqrt{3}}+\dfrac{\left(\sqrt{5}-\sqrt{2}\right)^2}{\sqrt{5}-\sqrt{2}}\)
\(=\sqrt{5}+\sqrt{3}+\sqrt{5}-\sqrt{2}\)
\(=2\sqrt{5}+\sqrt{3}-\sqrt{2}\)
\(1.A=\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}=\dfrac{1}{2}\sqrt{\dfrac{1}{3}.144}-2\sqrt{\dfrac{1}{3}.225}-\sqrt{\dfrac{1}{3}.9}+5\sqrt{\dfrac{4}{3}}=6\sqrt{\dfrac{1}{3}}-30\sqrt{\dfrac{1}{3}}-3\sqrt{\dfrac{1}{3}}+10\sqrt{\dfrac{1}{3}}=-17\sqrt{\dfrac{1}{3}}\) \(2.B=\left(2\sqrt{27}-3\sqrt{48}+3\sqrt{75}-\sqrt{192}\right)\left(1-\sqrt{3}\right)=\left(6\sqrt{3}-12\sqrt{3}+15\sqrt{3}-8\sqrt{3}\right)\left(1-\sqrt{3}\right)=\sqrt{3}\left(1-\sqrt{3}\right)=\sqrt{3}-3\) \(3.C=\left(2\sqrt{7}-2\sqrt{6}\right).\sqrt{6}-\sqrt{168}=2\sqrt{42}-12-2\sqrt{42}=-12\) \(4.D=\left(\sqrt{28}-2\sqrt{8}+\sqrt{7}\right).\sqrt{7}+4\sqrt{14}=\left(3\sqrt{7}-4\sqrt{2}\right)\sqrt{7}=21-4\sqrt{14}+4\sqrt{14}=21\)
1 , \(\left(\sqrt{12}-2\sqrt{75}\right).\sqrt{3}=\sqrt{12.3}-\sqrt{300.3}=6-30=-24\)
2 , \(\sqrt{3}.\left(\sqrt{12}.\sqrt{27}-\sqrt{3}\right)=\sqrt{12.27.3}-\sqrt{3.3}=18\sqrt{3}-3\)
3 , \(\left(7\sqrt{48}+3\sqrt{27}-\sqrt{12}\right):\sqrt{3}=\left(28\sqrt{3}+9\sqrt{3}-2\sqrt{3}\right):\sqrt{3}=35\)
4 , bạn làm tương tự nhé
5 , bạn làm tương tự nhé
6 , bạn làm tương tự nhé
Bài 1 bạn nhóm , trục như thường nhé :D
Bài 2. \(a.A=\sqrt{5+2\sqrt{6}}-\sqrt{5-2\sqrt{6}}=\sqrt{3+2\sqrt{3}.\sqrt{2}+2}-\sqrt{3-2\sqrt{3}.\sqrt{2}+2}=\sqrt{3}+\sqrt{2}-\sqrt{3}+\sqrt{2}=2\sqrt{2}\)
\(b.B=\sqrt{17-12\sqrt{2}}-\sqrt{9+4\sqrt{2}}=\sqrt{9-2.2\sqrt{2}.3+8}-\sqrt{8+2.2\sqrt{2}+1}=3-2\sqrt{2}-2\sqrt{2}-1=2-4\sqrt{2}\)
\(c.C=\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+\sqrt{8+2.2.\sqrt{2}+1}}}=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}=\sqrt{43+30\sqrt{2}}=\sqrt{25+2.3\sqrt{2}.5+18}=5+3\sqrt{2}\)
\(d.D=\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)
\(D^2=24-2\sqrt{\left(12-3\sqrt{7}\right)\left(12+3\sqrt{7}\right)}=24-2\sqrt{81}=24-18=6\)
\(D=-\sqrt{6}\left(do:D< 0\right)\)
a) \(\left(7\sqrt{48}+3\sqrt{27}-2\sqrt{12}\right):\sqrt{3}=7\sqrt{16}+3\sqrt{9}-2\sqrt{4}\)
\(=7.4+3.3-2.2=28+9-4=33\)
b) \(\left(\sqrt{125}+\sqrt{245}-\sqrt{5}\right):\sqrt{5}=\sqrt{25}+\sqrt{49}-1\)
\(=5+7-1=11\)
c) \(\left(\sqrt{\dfrac{1}{7}}-\sqrt{\dfrac{16}{7}}+\sqrt{7}\right):\sqrt{7}=\left(\dfrac{\sqrt{1}}{\sqrt{7}}-\dfrac{\sqrt{16}}{\sqrt{7}}+\sqrt{7}\right):\sqrt{7}\)
\(=\left(\dfrac{1}{\sqrt{7}}-\dfrac{4}{\sqrt{7}}+\sqrt{7}\right):\sqrt{7}=\dfrac{1}{\sqrt{7}.\sqrt{7}}-\dfrac{4}{\sqrt{7}.\sqrt{7}}+1\)
\(=\dfrac{1}{7}-\dfrac{4}{7}+1=\dfrac{1}{7}-\dfrac{4}{7}+\dfrac{7}{7}\Leftrightarrow\dfrac{1-4+7}{7}=\dfrac{4}{7}\)
bạn ghi rõ tại sao từ cái đề mà có ngay phép tính thứ hai cho mình với
a) \(\dfrac{\sqrt{7}+5}{\sqrt{7}-5}+\dfrac{\sqrt{7}-5}{\sqrt{7}+5}\)
\(=\dfrac{\left(\sqrt{7}+5\right)^2}{\left(\sqrt{7}-5\right)\left(\sqrt{7}+5\right)}+\dfrac{\left(\sqrt{7}-5\right)^2}{\left(\sqrt{7}+5\right)\left(\sqrt{7}-5\right)}\)
\(=\dfrac{\left(\sqrt{7}+5\right)^2+\left(\sqrt{7}-5\right)^2}{\left(\sqrt{7}-5\right)\left(\sqrt{7}+5\right)}\)
\(=\dfrac{\left(7+10\sqrt{7}+25\right)+\left(7-10\sqrt{7}+25\right)}{7-25}\)
\(=\dfrac{14+50}{7-25}\)
\(=\dfrac{64}{-18}\)
\(=\dfrac{-32}{9}\)
b) \(\sqrt{12}+\sqrt{48}-\sqrt{\left(\sqrt{75}-\sqrt{108}\right)^2}\)
\(=\sqrt{12}+\sqrt{48}-\left|\sqrt{75}-\sqrt{108}\right|\)
\(=\sqrt{12}+\sqrt{48}-\left(\sqrt{108}-\sqrt{75}\right)\) ( Vì \(\sqrt{75}< \sqrt{108}\) )
\(=\sqrt{12}+\sqrt{48}-\sqrt{108}+\sqrt{75}\)
\(=2\sqrt{3}+4\sqrt{3}-6\sqrt{3}+5\sqrt{3}\)
\(=5\sqrt{3}\)
a)\(\dfrac{\sqrt{7}+5+\sqrt{7}-5}{\sqrt{7}-5}=\dfrac{2\sqrt{7}}{\sqrt{7}-5}=\dfrac{-7-5\sqrt{7}}{9}\approx-2,25\)