Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(F=\log_{3-2\sqrt{2}}\left(27^{\log_92}+2^{\log_827}\right)=\log_{3-2\sqrt{2}}\left[\left(3^3\right)^{^{\log_92^2}}+2^{\log_{2^3}3^3}\right]\)
\(=\log_{3-2\sqrt{2}}\left(3^{\frac{3}{2}\log_32}+2^{\log_23}\right)\)
\(=\log_{3-2\sqrt{2}}\left(3^{\log_32^{\frac{3}{2}}}+2^{\log_23}\right)\)
\(=\log_{3-2\sqrt{2}}\left(2^{\frac{3}{2}}+3\right)=\log_{\left(3-2\sqrt{2}\right)^{-1}}\left(3-2\sqrt{2}\right)=-1\)
Chọn 2 làm cơ số, ta có :
\(A=\log_616=\frac{\log_216}{\log_26}=\frac{4}{1=\log_23}\)
Mặt khác :
\(x=\log_{12}27=\frac{\log_227}{\log_212}=\frac{3\log_23}{2+\log_23}\)
Do đó : \(\log_23=\frac{2x}{3-x}\) suy ra \(A=\frac{4\left(3-x\right)}{3+x}\)
b) Ta có :
\(B=\frac{lg30}{lg125}=\frac{lg10+lg3}{3lg\frac{10}{2}}=\frac{1+lg3}{3\left(1-lg2\right)}=\frac{1+a}{3\left(1-b\right)}\)
c) Ta có :
\(C=\log_65+\log_67=\frac{1}{\frac{1}{\log_25}+\frac{1}{\log_35}}+\frac{1}{\frac{1}{\log_27}+\frac{1}{\log_37}}\)
Ta tính \(\log_25,\log_35,\log_27,\log_37\) theo a, b, c .
Từ : \(a=\log_{27}5=\log_{3^3}5=\frac{1}{3}\log_35\)
Suy ra \(\log_35=3a\) do đó :
\(\log_25=\log_23.\log35=3ac\)
Mặt khác : \(b=\log_87=\log_{2^3}7=\frac{1}{3}\log_27\) nên \(\log_27=3b\)
Do đó : \(\log_37=\frac{\log_27}{\log_23}=\frac{3b}{c}\)
Vậy : \(C=\frac{1}{\frac{1}{3ac}+\frac{1}{3a}}+\frac{1}{\frac{1}{3b}+\frac{c}{3b}}=\frac{3\left(ac+b\right)}{1+c}\)
d) Điều kiện : \(a>0;a\ne0;b>0\)
Từ giả thiết \(\log_ab=\sqrt{3}\) suy ra \(b=a^{\sqrt{3}}\). Do đó :
\(\frac{\sqrt{b}}{a}=a^{\frac{\sqrt{3}}{2}-1};\frac{\sqrt[3]{b}}{\sqrt{a}}=a^{\frac{\sqrt{3}}{3}-\frac{1}{2}}=a^{\frac{\sqrt{3}}{3}\left(\frac{\sqrt{3}}{2}-1\right)}\)
Từ đó ta tính được :
\(A=\log_{a^{\alpha}}a^{\frac{-\sqrt{3}}{3}\alpha}=\log_{a^{\alpha}}\left(a^{\alpha}\right)^{\frac{-\sqrt{3}}{3}}=\frac{-\sqrt{3}}{3}\) với \(\alpha=\frac{\sqrt{3}}{2}-1\)
\(N=\log_{\frac{1}{3}}5\log_{25}\frac{1}{7}=\log_{3^{-1}}5\log_{5^5}3^{-3}=\left(-5\right)\left(-\frac{3}{2}\right).\log_35\log_53=\frac{15}{2}\)
\(B=25^{\frac{1}{2}+\frac{1}{9}\log_{\frac{1}{2}}27+\log_{125}81}=\left(5^2\right)^{\frac{1}{2}+\frac{1}{9}\log_{5^{-1}}3^3+\log_{5^3}3^4}\)
\(=5^{1-\frac{2}{3}\log_53+\frac{8}{3}\log_53}=5^{1+2\log_53}=5.5^{\log_53^2}=5.9=45\)
Ta có \(a=\log_{25}7=\frac{\log_27}{\log_225}=\frac{\log_27}{2\log_25}=\frac{\log_27}{2b}\Rightarrow\log_27=2ab\)
\(\Rightarrow H=\log_{\sqrt[3]{5}}\frac{49}{8}=\frac{\log_2\frac{49}{8}}{\log_2\sqrt[3]{5}}=\frac{\log_2\frac{7^2}{2^2}}{\log_25^{\frac{1}{3}}}=\frac{2\log_27-3}{\frac{1}{3}\log_25}=\frac{12ab-9}{b}\)
Ta có \(a=\log_{\sqrt{2}}\left(\frac{1}{\sqrt[3]{5}}\right)=\log_{2^{\frac{1}{2}}}5^{-\frac{1}{3}}=-\frac{2}{3}\log_25\)
\(\Rightarrow\log_25=-\frac{3a}{2}\)
\(\Rightarrow C=\log40=\frac{\log_240}{\log_210}=\frac{\log_2\left(2^3.5\right)}{\log_2\left(2.5\right)}=\frac{3+\log_25}{1+\log_25}=\frac{6-3a}{2-3a}\)
\(B=\log_{25}15\) biết \(\log_{25}3=a\)
Ta có : \(a=\log_{15}3=\frac{1}{\log_3\left(3.5\right)}=\frac{1}{1+\log_35}\)
\(\Rightarrow\log_35=\frac{1}{a}-1=\frac{1-a}{a}\)
\(\Rightarrow B=\log_{25}15=\frac{\log_315}{\log_325}=\frac{\log_3\left(3.5\right)}{\log_35^2}=\frac{1+\frac{1-a}{a}}{2.\log_35}=\frac{1}{2\left(1-a\right)}\)
\(D=\left(\sqrt[3]{9}\right)^{\frac{2}{2\log_53}}=\left(3^{\frac{2}{3}}\right)^{\frac{3\log_35}{2}}=3^{\log_35}=5\)
Ta có :
\(a=\log_615=\frac{\log_215}{\log_26}=\frac{\log_23+\log_25}{1+\log_23}\left(1\right)\)
\(b=\log_{12}18=\frac{\log_118}{\log_212}=\frac{\log_2\left(2.3^2\right)}{\log_2\left(2^2.3\right)}=\frac{1+2\log_23}{2+\log_23}\left(2\right)\)
Từ \(\left(2\right)\Rightarrow b\left(2+\log_23\right)=1+2\log_23\Leftrightarrow\left(b-2\right)\log_23=1-2b\Leftrightarrow\log_23=\frac{1-2b}{b-2}\)
Từ \(\left(1\right)\Rightarrow\log_25=a\left(a+\log_23\right)-\log_23=\left(a-1\right)\log_23+a=\left(a-1\right)\frac{1-2b}{b-2}+a=\frac{b-5}{4b-2a-2ab-2}\)
\(\Rightarrow F=\log_{25}24=\frac{\log_224}{\log_225}=\frac{\log_2\left(2^3.3\right)}{\log_25^2}=\frac{3+\log_23}{2\log_25}=\frac{3+\frac{1-2b}{b-2}}{2.\frac{2b-a-ab-1}{b-2}}=\frac{b-5}{4b-2a-2ab-2}\)
\(B=\log_{\sqrt{6}}3\log_336=\log_{\sqrt{6}}36=\log_{6^{\frac{1}{2}}}6^2=4\)
Logab×logbc×logca2=2