K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2-y^2-2y-1=x^2-\left(y^2+2y+1\right)=x^2-\left(y+1\right)^2=\left(x-y-1\right)\left(x+y+1\right)\)

\(=\left(93-6-1\right)\left(93+6+1\right)=86.100=8600\)

2 tháng 10 2016

\(A=x^2-y^2-2y-1\)

\(=x^2-\left(y+1\right)^2=\left(x-y-1\right)\left(x+y+1\right)\)

\(=\left(93-6-1\right)\left(93+6+1\right)=86\cdot100=8600\)

B k hiểu đề là j

2 tháng 10 2016

là sao bạn đề đúng  mà

DD
6 tháng 9 2021

\(y=ax^2+bx-7\)đi qua điểm \(A\left(-1,-6\right)\)nên \(a-b-7=-6\Leftrightarrow a-b=1\)(1)

\(y=ax^2+bx-7\)có trục đối xứng \(x=-\frac{1}{3}\)nên \(\frac{-b}{2a}=-\frac{1}{3}\Leftrightarrow2a-3b=0\)(2)

Từ (1) và (2) suy ra \(\hept{\begin{cases}a=3\\b=2\end{cases}}\)

\(a^2-b^2=3^2-2^2=5\).

6 tháng 9 2021

Vào thăm trang cá nhân của tớ nhá

24 tháng 5 2020

\(P=\sqrt{x^4+x^2y^2}+x^2=\sqrt{x^4+\frac{1}{x^2}}+x^2\)

Ta có: \(x^4+\frac{1}{x^2}=x^4+\frac{1}{8x^2}+\frac{1}{8x^2}+...+\frac{1}{8x^2}\ge9\sqrt[9]{x^4.\left(\frac{1}{8x^2}\right)^8}\)

\(=9\sqrt[9]{\frac{1}{8^8.x^{12}}}\)

=> \(P=3\sqrt[18]{\frac{1}{8^8.x^{12}}}+x^2\)

\(=\sqrt[18]{\frac{1}{8^8x^{12}}}+\sqrt[18]{\frac{1}{8^8x^{12}}}+\sqrt[18]{\frac{1}{8^8x^{12}}}+x^2\)

\(\ge4\sqrt[4]{\left(\sqrt[18]{\frac{1}{8^8x^{12}}}\right)^3.x^2}\)

\(=4.\left(\frac{1}{8^{\frac{1}{3}}.x^{\frac{1}{2}}}\right).x^2=2\)

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x^4=\frac{1}{8x^2}\\x^2=\sqrt[8]{\frac{1}{8^8x^{12}}}\end{cases}}\)<=> x^2 = 1/2 khi đó y = 2 , x = \(\frac{1}{\sqrt{2}}\)

Vậy GTNN của P = 2.

5 tháng 2 2020

tại x=-1;y=3 hay vào A ta được

A=(-1)232 + (-1).3 +(-1)3+33

<=>A=32

Tại x=1/2;y=-1/3 Thay vào B ta được

B= 3(1/2)3(-1/3)+6(1/2)2(-1/3)2+3(1/2)(-1/3)3

<+>B=-1/72

5 tháng 2 2020

tại x=1 và y=3

ta có : A=1.9+1.3+1+9=108

tại x=1/2 và y=-1/3

ta có :3.1/8.(-1/3)+6.1/4.1/9+3.1/2.(-1/9)=-1/8

10 tháng 12 2019

Đây là toán lớp 8 mọi người ạ, em ấn nhầm.

27 tháng 6 2016

B= \(\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]^2\)

ta thấy : \(\left(x+\frac{1}{2}\right)^2\ge0\)

=> \(\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

=>\(\left[\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\right]^2\ge\frac{9}{16}\)

=> min B=9/16 kh x=-1/2

C= \(x^2-2xy+y^2+1\)\(\left(x-y\right)^2+1\)

ta có \(\left(x-y\right)^2\ge0\)=>\(\left(x-y\right)^2+1\ge1\)

=> Min C=1 khi x=y

 

27 tháng 6 2016

cảm ơn bạn nhìu nhak

8 tháng 12 2019

câu 1.

a. \(=\left(x+y\right)\left(x-5\right)\)

b. \(=\left(x+2y\right)^2\)

c. \(=\left(x-1\right)\left(x-6\right)\)

câu 3.

a. \(A=5\left(x+1\right)^2+2010\ge2010\forall x\)

Vậy \(minA=2010\Leftrightarrow x=-1\)

b. \(\Leftrightarrow\left(y+1\right)\left(x-1\right)=11\)

Vì x, y nguyên nên có các TH :

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}y+1=1\\x-1=11\end{matrix}\right.\\\left\{{}\begin{matrix}y+1=11\\x-1=1\end{matrix}\right.\\\left\{{}\begin{matrix}y+1=-1\\x-1=-11\end{matrix}\right.\\\left\{{}\begin{matrix}y+1=-11\\x-1=-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}y=0\\x=12\end{matrix}\right.\\\left\{{}\begin{matrix}y=10\\x=2\end{matrix}\right.\\\left\{{}\begin{matrix}y=-2\\x=-10\end{matrix}\right.\\\left\{{}\begin{matrix}y=-12\\x=0\end{matrix}\right.\end{matrix}\right.\)

câu 6.

a. giống câu 3

b. \(B=-2\left(x-1\right)^2+7\le7\forall x\in R\)