Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
a) \(A=\left(x+5\right)\left(2x-3\right)-2x\left(x+3\right)-\left(x-15\right)\)
\(=x\left(2x-3\right)+5\left(2x-3\right)-2x^2-6x-x+15\)
\(=2x^2-3x+10x-15-2x^2-6x-x+15\)
\(=0\)
b) \(B=2\left(x-5\right)\left(x+1\right)+\left(x+3\right)-\left(x-15\right)\)
\(=2\left[x\left(x+1\right)-5\left(x+1\right)\right]+x+3-x+15\)
\(=2.\left[\left(x^2+x\right)-\left(5x+5\right)\right]+x+3-x+15\)
\(=2.\left(x^2+x-5x-5\right)+x+3-x+15\)
\(=2x^2+2x-10x-10+x+3-x+15\)
\(=2x^2-8x+8\)
\(=2x\left(x-4\right)+8\)
Thay: \(x=\frac{3}{4}\) vào B ta đc:
\(2.\frac{3}{4}\left(\frac{3}{4}-4\right)+8\)
\(=\frac{3}{2}.\frac{-13}{4}+8\)
\(=\frac{25}{8}\)
c) \(C=5x^2\left(3x-2\right)-\left(4x+7\right)\left(6x^2-x\right)-\left(7x-9x^3\right)\)
\(=5x^23x-5x^22-\left[4x\left(6x^2-x\right)+7\left(6x^2-x\right)\right]-7x+9x^3\)
\(=15x^3-10x^2-\left[4x6x^2-4x^2+42x^2-7x\right]-7x+9x^3\)
\(=15x^3-10x^2-24x^3+4x^2-42x^2+7x-7x+9x^3\)
\(=-48x^2\)
P/s: Ko chắc!
Trả lời:
Bài 4:
b, B = ( x + 1 ) ( x7 - x6 + x5 - x4 + x3 - x2 + x - 1 )
= x8 - x7 + x6 - x5 + x4 - x3 + x2 - x + x7 - x6 + x5 - x4 + x3 - x2 + x - 1
= x8 - 1
Thay x = 2 vào biểu thức B, ta có:
28 - 1 = 255
c, C = ( x + 1 ) ( x6 - x5 + x4 - x3 + x2 - x + 1 )
= x7 - x6 + x5 - x4 + x3 - x2 + x + x6 - x5 + x4 - x3 + x2 - x + 1
= x7 + 1
Thay x = 2 vào biểu thức C, ta có:
27 + 1 = 129
d, D = 2x ( 10x2 - 5x - 2 ) - 5x ( 4x2 - 2x - 1 )
= 20x3 - 10x2 - 4x - 20x3 + 10x2 + 5x
= x
Thay x = - 5 vào biểu thức D, ta có:
D = - 5
Bài 5:
a, A = ( x3 - x2y + xy2 - y3 ) ( x + y )
= x4 + x3y - x3y - x2y2 + x2y2 + xy3 - xy3 - y4
= x4 - y4
Thay x = 2; y = - 1/2 vào biểu thức A, ta có:
A = 24 - ( - 1/2 )4 = 16 - 1/16 = 255/16
b, B = ( a - b ) ( a4 + a3b + a2b2 + ab3 + b4 )
= a5 + a4b + a3b2 + a2b3 + ab4 - ab4 - a3b2 - a2b3 - ab4 - b5
= a5 + a4b - ab4 - b5
Thay a = 3; b = - 2 vào biểu thức B, ta có:
B = 35 + 34.( - 2 ) - 3.( - 2 )4 - ( - 2 )5 = 243 - 162 - 48 + 32 = 65
c, ( x2 - 2xy + 2y2 ) ( x2 + y2 ) + 2x3y - 3x2y2 + 2xy3
= x4 + x2y2 - 2x3y - 2xy3 + 2x2y2 + 2y4 + 2x3y - 3x2y2 + 2xy3
= x4 + 2y4
Thay x = - 1/2; y = - 1/2 vào biểu thức trên, ta có:
( - 1/2 )4 + 2.( - 1/2 )4 = 1/16 + 2. 1/16 = 1/16 + 1/8 = 3/16
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
Ta có : \(B\text{=}4x^2-12x+9\)
\(B\text{=}\left(2x-3\right)^2\)
Với \(x\text{=}\dfrac{1}{2}\)
\(\Rightarrow B\text{=}\left(2.\dfrac{1}{2}-3\right)^2\)
\(B\text{=}\left(-2\right)^2\text{=}4\)
Ta có : \(A\text{=}5\left(x+3\right)\left(x-3\right)+\left(2x+3\right)^2+\left(x-6\right)^2\)
\(A\text{=}5\left(x^2-9\right)+\left(2x+3\right)^2+\left(x-6\right)^2\)
\(A\text{=}5x^2-45+4x^2+12x+9+x^2-12x+36\)
\(A\text{=}10x^2\)
Với \(x\text{=}-\dfrac{1}{5}\)
\(\Rightarrow A\text{=}10.\left(-\dfrac{1}{5}\right)^2\text{=}\dfrac{2}{5}\)
B = 4x² - 12x + 9
= (2x - 3)²
Tại x = 1/2 ta có:
B = (2.1/2 - 3)²
= (-2)²
= 4
-------------------
A = 5(x + 3)(x - 3) + (2x + 3)² + (x - 6)²
= 5x² - 45 + 4x² + 12x + 9 + x² - 12x + 36
= 10x²
Tại x = 1/5 ta có:
A = 10.(1/5)²
= 2/5