\(9x^2\)+  42x+49 tại x=1

\(\frac...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(9x^2+42x+49=\left(3x+7\right)^2\)

Thay x=1 ta có 

\(\left(3.1+7\right)^2=10^2=100\)

\(\frac{1}{4}a^2+2ab^2+4b^4=\left(\frac{1}{2}a+2b^2\right)^2\)

Thay a=2;b=-1 ta có 

\(\left(\frac{1}{2}.2+2\left(-1\right)^2\right)^2=\left(1+2\right)^2=3^2=9\)

25 tháng 7 2019

\(\(9x^2+42x+49\)\)tại x = 1

Ta có:\(\(9x^2+42x+49=\left(3x\right)^2+2.3x.7+7^2=\left(3x+7\right)^2\)\)

Thay x = 1 vào \(\(\left(3x+7\right)^2\)\)ta được:

\(\(\left(3.1+7\right)^2=10^2=100\)\)

\(\(\frac{1}{4}a^2+2ab^2+4b^4\)\)tại a = 2 ; b = -1

Ta có: \(\frac{1}{4}a^2+2ab^2+4b^4=\left(\frac{1}{2}a\right)^2+2.\frac{1}{2}a.2b^2+\left(2b\right)^2=\left(\frac{1}{2}a+2b^2\right)^2\)

Thay a = 2 ; b = -1 vào\(\left(\frac{1}{2}a+2b^2\right)^2\)ta được:

\(\(\left(\frac{1}{2}.2+2.\left(-1\right)^2\right)^2=\left(3\right)^2=9\)\)

9 tháng 2 2021

ĐKXĐ : \(\hept{\begin{cases}ab-2\ne0\\ab+2\ne0\\a^4b^4\ne0\end{cases}}\Rightarrow ab\ne\pm2;a\ne0;b\ne0\)

\(P=\left(\frac{1}{ab-2}+\frac{1}{ab+2}+\frac{2ab}{a^2b^2+4}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)

\(=\left(\frac{2ab}{a^2b^2-4}+\frac{2ab}{a^2b^2+4}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)

\(=\left(\frac{4a^3b^3}{a^4b^4-16}+\frac{4a^3b^3}{a^4b^4+16}\right).\frac{a^4b^4+16}{a^4b^4}\)

\(=\frac{8a^5b^5}{a^8b^8-16^2}.\frac{a^4b^4+16}{a^4b^4}=\frac{8a^5b^5\left(a^4b^4+16\right)}{\left(a^4b^4-16\right)\left(a^4b^4+16\right).a^4b^4}\)

\(=\frac{8ab}{a^4b^4-16}\)

b) Khi \(\frac{a^2+4}{b^2+9}=\frac{a^2}{9}\)

=> (a2 + 4).9 = a2(b2 + 9)

=> 9a2 + 36 = a2b2 + 9a2

=> a2b2 = 36

=> (ab)2 = 36

=> \(\orbr{\begin{cases}ab=6\left(tm\right)\\ab=-6\left(tm\right)\end{cases}}\)

Khi ab = 6 => P = \(\frac{8ab}{\left(ab\right)^4-16}=\frac{8.6}{6^4-16}=\frac{48}{1280}=\frac{3}{80}\)

Khi ab = -6 => P = \(\frac{8ab}{\left(ab\right)^4-16}=\frac{8.\left(-6\right)}{\left(-6\right)^4-16}=-\frac{3}{80}\)

2 tháng 2 2020

a) \(ĐKXĐ:x\ne\pm4;x\ne-2\)

\(P=\left(\frac{8}{x^2-16}+\frac{1}{x+4}\right):\frac{1}{x^2-2x-8}\)

\(\Leftrightarrow P=\left(\frac{8}{\left(x-4\right)\left(x+4\right)}+\frac{1}{x+4}\right):\frac{1}{\left(x-4\right)\left(x+2\right)}\)

\(\Leftrightarrow P=\frac{8+x-4}{\left(x-4\right)\left(x+4\right)}:\frac{1}{\left(x-4\right)\left(x+2\right)}\)

\(\Leftrightarrow P=\frac{x+4}{\left(x-4\right)\left(x+4\right)}:\frac{1}{\left(x-4\right)\left(x+2\right)}\)

\(\Leftrightarrow P=\frac{1}{x-4}.\left(x-4\right)\left(x+2\right)\)

\(\Leftrightarrow P=\frac{\left(x-4\right)\left(x+2\right)}{\left(x-4\right)}\)

\(P=x+2\)

b) Ta có :

\(x^2-9x+20=0\)

\(\Leftrightarrow x^2-4x-5x+20=0\)

\(\Leftrightarrow x\left(x-4\right)-5\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=5\\x=4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}P=x+2=5+2=7\\P=x+2=4+2=6\end{cases}}\)

Vậy \(P\in\left\{7;6\right\}\)

5 tháng 8 2017

\(A=\frac{1}{x+5}+\frac{2}{x-5}-\frac{2x+10}{\left(x+5\right)\left(x-5\right)}\)   ĐK đề bài

\(=\frac{x-5+2\left(x+5\right)-2x-10}{\left(x+5\right)\left(x-5\right)}=\frac{-\left(x+5\right)}{\left(x+5\right)\left(x-5\right)}=-\frac{1}{x-5}\)

b/ có A=-3 => \(-\frac{1}{x-5}=-3 \Rightarrow x-5=\frac{1}{3}\Rightarrow x=\frac{16}{3}\)

có \(9x^2-42x+49=\left(3x-7\right)^2=\left(\frac{3.16}{3}-7\right)^2=81\)

24 tháng 6 2018

a,\(=\left(\frac{3}{5}x+\frac{2}{7}y\right)^2=\left(\frac{3}{5}.5+\frac{2}{7}.\left(-7\right)\right)^2=0\)

\(b,=\left(\frac{5}{4}u^2v+\frac{2}{25}v^2\right)^2=\left(\frac{5}{4}.\left(\frac{2}{5}\right)^2.5+\frac{2}{25}.5^2\right)^2=3^2=9\)

15 tháng 11 2017

a) \(P=\dfrac{2x-4}{x^2-4x+4}-\dfrac{1}{x-2}=\dfrac{2\left(x-2\right)}{\left(x-2\right)^2}-\dfrac{1}{x-2}\)

\(=\dfrac{2x-4-\left(x-2\right)}{\left(x-2\right)^2}=\dfrac{x-2}{\left(x-2\right)^2}=\dfrac{1}{x-2}\)

ĐKXĐ: \(x\ne2\) nên với x = 2 thì P không được xác định

\(Q=\dfrac{3x+15}{x^2-9}+\dfrac{1}{x+3}-\dfrac{2}{x-3}\)

\(=\dfrac{3\left(x+5\right)}{\left(x-3\right)\left(x+3\right)}+\dfrac{1}{x+3}-\dfrac{2}{x-3}\)

\(=\dfrac{3x+15+x-3-2\left(x+3\right)}{x^2-9}=\dfrac{2x+6}{x^2-9}=\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{2}{x-3}\)

Tại x = 2 thì \(Q=\dfrac{2}{2-3}=\dfrac{2}{-1}=-2\)

b) Để P < 0 tức \(\dfrac{1}{x-2}< 0\) mà tứ là 1 > 0

nên để P < 0 thì x - 2 < 0 \(\Leftrightarrow x< 2\)

Vậy x < 2 thì P < 0

c) Để Q nguyên tức \(\dfrac{2}{x-3}\) phải nguyên

\(\dfrac{2}{x-3}\) nguyên khi x - 3 \(\inƯ_{\left(2\right)}\)

hay x - 3 \(\in\left\{-2;-1;1;2\right\}\)

Lập bảng :

x - 3 -1 -2 1 2

x 2 1 4 5

Vậy x = \(\left\{1;2;4;5\right\}\) thì Q đạt giá trị nguyên

15 tháng 11 2017

a) \(\dfrac{20x^3}{11y^2}.\dfrac{55y^5}{15x}=\dfrac{20.5.11.x.x^2.y^2.y^3}{11.3.5.x.y^2}=\dfrac{20x^2y^3}{3}\)

b) \(\dfrac{5x-2}{2xy}-\dfrac{7x-4}{2xy}=\dfrac{5x-2-7x+4}{2xy}=\dfrac{-2x+2}{2xy}=\dfrac{2\left(1-x\right)}{2xy}=\dfrac{1-x}{xy}\)

23 tháng 12 2017

\(P=\left(\frac{8}{\left(x+4\right)\left(x-4\right)}+\frac{1}{x+4}\right):\frac{1}{x^2-2x-8}\)

\(P=\left(\frac{8}{\left(x+4\right)\left(x-4\right)}+\frac{x-4}{\left(x-4\right)\left(x+4\right)}\right)\cdot\frac{x^2-2x-8}{1}\)

\(P=\left(\frac{x+4}{\left(x+4\right)\left(x-4\right)}\right)\cdot x^2-2x-8\)

\(P=\frac{1}{x-4}\cdot x^2-2x-8\)

P\(P=\frac{x^2+2x-4x+8}{x-4}\)

\(P=\frac{x\left(x+2\right)-4\left(x+2\right)}{x-4}\)

\(P=\frac{\left(x-4\right)\left(x+2\right)}{x-4}\)

\(P=x+2\)

14 tháng 1 2018

2 ,\(x^2-9x+20=0\)

\(\Rightarrow x^2-4x-5x+20=0\)

\(\Rightarrow x\left(x-4\right)-5\left(x-4\right)=0\)

\(\Rightarrow\left(x-5\right)\left(x-4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=5\\x=4\end{cases}}\)

\(\orbr{\begin{cases}x=5\Rightarrow\\x=4\Rightarrow\end{cases}}\orbr{\begin{cases}P=7\\P=6\end{cases}}\)