\(D=\left(\frac{3}{2}\right)^2+\left(\frac{1}{4}\right)^2-\left(...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 7 2019

D = \(\frac{9}{4}+\frac{1}{16}-\frac{1}{8}\)

D = \(\frac{35}{16}\)

29 tháng 7 2019

\(D=\left(\frac{3}{2}\right)^2+\left(\frac{1}{4}\right)^2-\left(\frac{1}{2}\right)^3\)

\(D=\frac{9}{4}+\frac{1}{16}-\frac{1}{8}\)

\(D=\frac{37}{16}-\frac{1}{8}\)

\(D=\frac{35}{16}.\)

Chúc bạn học tốt!

25 tháng 3 2018

\(A=\frac{\left(1+2+...+100\right)\left(\frac{1}{2}^2-...-\frac{1}{5}\right)\left(2,4.42-21.4,8\right)}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}\)

=> \(A=\frac{\left(1+2+...+100\right)\left(\frac{1}{2}-...-\frac{1}{5}\right).0}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}\)=     0

9 tháng 1 2020

Đặt \(A=\left(\frac{a}{b}+1\right)\left(\frac{b}{c}+1\right)\left(\frac{c}{d}+1\right)\left(\frac{d}{a}+1\right)\)

\(\frac{-a+b+c+d}{a}=\frac{a-b+c+d}{b}=\frac{a+b-c+d}{c}=\frac{a+b+c-d}{d}=\frac{2\left(a+b+c+d\right)}{a+b+c+d}=2\)( tc dãy tỉ số bằng nhau )

\(\Rightarrow\hept{\begin{cases}-a+b+c+d=2a\\a-b+c+d=2b\\a+b-c+d=2c\end{cases}}\)và \(a+b+c-d=2d\)

\(\Rightarrow\hept{\begin{cases}a+b+c+d=4a\\a+b+c+d=4b\\a+b+c+d=4c\end{cases}}\)và \(a+b+c+d=4d\)

\(\Rightarrow4a=4b=4c=4d\)

\(\Rightarrow a=b=c=d\)thay vào bt A ta được:

\(A=2.2.2.2=16\)

19 tháng 1 2018

avata của bn đẹp zai quá

19 tháng 1 2018

cau len mang gi hinh anh cua kỉito la duoc

26 tháng 2 2018

a/ \(M=x^4-xy^3+x^3y-y^4-1\)

\(\Leftrightarrow M=x^3\left(x+y\right)-y^3\left(x+y\right)-1\)

\(x+y=0\)

\(\Leftrightarrow M=x^3.0-y^3.0-1\)

\(\Leftrightarrow M=-1\)

Vậy ...

27 tháng 2 2018

cau b lam nhu the nao vay

30 tháng 4 2016

1) Đặt \(A=1.2+2.3+3.4+....+98.99\)

Ta có:\(3A=3.\left(1.2+2.3+3.4+....+98.99\right)\)

\(3A=1.2.3+2.3.3+3.4.3+....+98.99.3\)

\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+....+98.99.\left(100-97\right)\)

\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+98.99.100-97.98.99\)

\(3A=98.99.100\Rightarrow A=\frac{98.99.100}{3}=323400\)

Ta có:\(\frac{A.y}{1}=184800\Rightarrow y=184800:323400=\frac{4}{7}\)

30 tháng 4 2016

2)Đặt \(A=\left(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{37.38.39}\right).1428+185,8\)

\(B=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+....+\frac{1}{37.38.39}\)

Tổng quát:\(\frac{2}{\left(a-1\right)a\left(a+1\right)}=\frac{1}{\left(a-1\right)a}-\frac{1}{a\left(a+1\right)}\)

Ta có:

\(2B=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+.....+\frac{2}{37.38.39}\)

\(2B=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+\left(\frac{1}{3.4}-\frac{1}{4.5}\right)+...+\left(\frac{1}{37.38}-\frac{1}{38.39}\right)\)

\(2B=\frac{1}{1.2}-\frac{1}{38.39}=\frac{370}{741}\Rightarrow B=\frac{370}{741}:2=\frac{185}{741}\)

Khi đó \(A=\frac{185}{741}.1428+185,8=...........\) (tự tính ra)

(*)số ko đẹp mấy

30 tháng 5 2016

\(\text{a)Để C đạt GTNN}\)

\(\Rightarrow\hept{\begin{cases}\left(x+2\right)^2\\\left(y-\frac{1}{5}\right)^2\end{cases}\ge0}\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2\ge0\)

\(\Rightarrow\left(x+2\right)^2+\left(y-\frac{1}{5}\right)^2-10\ge0-10\)

\(\Rightarrow C\ge-10\)

\(\text{Vậy minC=-10 khi x=-2;y= }\frac{1}{5}\)

30 tháng 5 2016

b)\(\text{Để D đạt GTLN}\)

=>(2x-3)2+5 đạt GTNN

Mà (2x-3)2\(\ge\)5

\(\Rightarrow GTLN\)của \(A=\frac{4}{5}\)khi \(x=\frac{3}{2}\)

25 tháng 3 2018

Bài 1 : 

Ta có : 

\(A=\frac{\frac{3}{4}-\frac{3}{11}+\frac{3}{13}}{\frac{5}{7}-\frac{5}{11}+\frac{5}{13}}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{4}-\frac{5}{6}+\frac{5}{8}}\)

\(A=\frac{3\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}+\frac{\frac{1}{2}-\frac{1}{3}+\frac{1}{4}}{\frac{5}{2}\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}\right)}\)

\(A=\frac{3}{5}+\frac{1}{\frac{5}{2}}\)

\(A=\frac{3}{5}+\frac{2}{5}\)

\(A=1\)

\(b)\) Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}=\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

Đo đó : 

\(\frac{y+z-x}{x}=2\)\(\Rightarrow\)\(y+z=3x\)\(\left(1\right)\)

\(\frac{z+x-y}{y}=2\)\(\Rightarrow\)\(x+z=3y\)\(\left(2\right)\)

\(\frac{x+y-z}{z}=2\)\(\Rightarrow\)\(x+y=3z\)\(\left(3\right)\)

Lại có : \(B=\left(1+\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\left(1+\frac{z}{x}\right)=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\)

Thay (1), (2) và (3) vào \(B=\frac{x+y}{y}.\frac{y+z}{z}.\frac{x+z}{x}\) ta được : 

\(B=\frac{2z}{y}.\frac{2x}{z}.\frac{2y}{x}=\frac{8xyz}{xyz}=8\)

Vậy \(B=8\)

Chúc bạn học tốt ~ 

25 tháng 3 2018

bạn phùng minh quân câu 1 a tại sao lại rút gọn được \(\frac{3.\left(\frac{1}{4}-\frac{1}{11}+\frac{1}{13}\right)}{5\left(\frac{1}{7}-\frac{1}{11}+\frac{1}{13}\right)}=\frac{3}{5}\) vậy nó không cùng nhân tử mà 

câu b \(\frac{y+z-x+z+x-y+x+y-z}{x+y+z}=\frac{\left(y-y+y\right)+\left(-x+x+x\right)+\left(z+z-z\right)}{x+y+z}=\frac{x+y+z}{x+y+z}=1\)sao lại ra bằng 2

(mình chỉ góp ý thôi nha tại mình làm thấy nó sai sai) 

9 tháng 3 2017

\(rutgonbieuthuc\):

\(\left(1+\frac{1}{2}\right)\cdot\left(1+\frac{1}{3}\right)\cdot\left(1+\frac{1}{10}\right)\cdot...\cdot\left(1+\frac{1}{10}\right)\)

\(=1\frac{1}{2}\cdot1\frac{1}{3}\cdot1\frac{1}{4}\cdot...\cdot1\frac{1}{10}\)