K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2019

\(A=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)

\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{100}\)

Ta có A =1/1.2+1/3.4+1/5.6+...+1/99.100

=(1/1.2+1/3.4)+(1/5.6+...+1/99.100)

=7/12+(1/5.6+...+1/99.100)>7/12(1)

A=1-1/2+1/3-1/4+1/5-1/6+...+1/99-1/100

=(1+1/3+1/5+...+1/99)-(1/2+1/4+..+1/100)

=(1+1/2+1/3+1/4+..+1/99+1/100)-2(1/2+1/4+....+1/100)    ( Cộng thêm cả 2 vế với 1/2+1/4+..+1/100)

=(1+1/2+1/3+..+1/100)-(1+1/2+..+1/50)

=1/51+1/52+..+1/100

Dãy số trên có 50 số hang 50 chia hết cho 10 nên ta nhóm 10 số vào 1 nhóm

A=(1/51+1/52+..+1/60)+(1/61+1/62+..+1/70)+(1/71+1/72+..+1/80)+(1/81+..+1/90)+(1/91+..+1/100)

<1/50.10+1/60.10+1/70.10+1/80.10+1/90.10=1/5+1/6+1/7+1/8+1/9<1/5+1/6+1/7.3=167/210<175/210=5/6

=>A<5/6(2)

từ 1 và 2 => đpcm

4 tháng 11 2018

Câu hỏi của Doãn Thị Thanh Thu - Toán lớp 7 - Học toán với OnlineMath tham khảo

5 tháng 11 2018

Thank you 

5 tháng 11 2016

Áp dụng \(\frac{a}{b}>1\Leftrightarrow\frac{a+m}{b+m}< \frac{a}{b}< \frac{a-m}{b-m}\) (a;b;m \(\in\) N*) ta có:

\(S=\frac{2}{1}.\frac{4}{3}.\frac{6}{5}.\frac{8}{7}.\frac{10}{9}...\frac{100}{99}\)

=> \(\frac{2}{1}.\frac{4}{3}.\frac{6}{5}.\frac{9}{8}.\frac{11}{10}....\frac{101}{100}< S< \frac{2}{1}.\frac{4}{3}.\frac{6}{5}.\frac{8}{7}.\frac{9}{8}...\frac{99}{98}\)

\(\Rightarrow\left(\frac{2}{1}.\frac{4}{3}.\frac{6}{5}\right)^2.\frac{8}{7}.\frac{9}{8}.\frac{10}{9}.\frac{11}{10}...\frac{100}{99}.\frac{101}{100}\) < S2 \(< \left(\frac{2}{1}.\frac{4}{3}.\frac{6}{5}.\frac{8}{7}\right)^2.\frac{9}{8}.\frac{10}{9}...\frac{99}{98}.\frac{100}{99}\)

=> \(\left(\frac{16}{5}\right)^2.\frac{101}{7}\) < S2 < \(\left(\frac{128}{35}\right)^2.\frac{100}{8}\)

=> 147 < S2 < 167

=> 144 < S2 < 169

=> 122 < S2 < 132

=> 12 < S < 13 (đpcm)

5 tháng 11 2016

* là dấu nhân à bạn??

4 tháng 7 2015

\(A=\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right)\cdot3^5+\left(\frac{1}{3^5}+\frac{1}{3^6}+\frac{1}{3^7}+\frac{1}{3^8}\right)\cdot3^9+...+\left(\frac{1}{3^{97}}+\frac{1}{3^{98}}+\frac{1}{3^{99}}+\frac{1}{3^{100}}\right)\cdot3^{101}\)=\(\left(\frac{3^5}{3}+\frac{3^5}{3^2}+\frac{3^5}{3^3}+\frac{3^5}{3^4}\right)+\left(\frac{3^9}{3^5}+\frac{3^9}{3^6}+\frac{3^9}{3^7}+\frac{3^9}{3^8}\right)+...+\left(\frac{3^{101}}{3^{97}}+\frac{3^{101}}{3^{98}}+\frac{3^{101}}{3^{99}}+\frac{3^{101}}{3^{100}}\right)\)

=(3+32+33+34)+(3+32+33+34)+...+(3+32+33+34)

Tổng trên có số số hạng là(mỗi ngoặc là 1 số hạng)

(101-5):4+1=25(số hạng)

=>A=25.(3+32+33+34)=25.120=3000

ai giúp mình với rồi mình tink cho nha cảm ơn các bạn nhiều