Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1-\frac{1}{15}\right).\left(1-\frac{1}{21}\right).\left(1-\frac{1}{28}\right)......\left(1-\frac{1}{1275}\right)\)
a, \(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x\left(x+1\right)}=\frac{13}{90}\)
⇒ \(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{13}{90}\)
⇒ \(\frac{1}{5}-\frac{1}{x+1}=\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{1}{5}-\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{18}{90}-\frac{13}{90}\)
⇒ \(\frac{1}{x+1}=\frac{1}{18}\)
⇒ x + 1 = 18
⇒ x = 17
Vậy x = 17
b, \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{x\left(x+3\right)}=\frac{49}{148}\)
⇒ \(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{x\left(x+3\right)}=\frac{49.3}{148}\)
⇒ \(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{147}{148}\)
⇒ \(1-\frac{1}{x+3}=\frac{147}{148}\)
⇒ \(\frac{1}{x+3}=1-\frac{147}{148}\)
⇒ \(\frac{1}{x+3}=\frac{1}{148}\)
⇒ x + 3 = 148
⇒ x = 145
Vậy x = 145
Bài 1:
a) \(\frac{1}{5}x^4y^3-3x^4y^3\)
= \(\left(\frac{1}{5}-3\right)x^4y^3\)
= \(-\frac{14}{5}x^4y^3.\)
b) \(5x^2y^5-\frac{1}{4}x^2y^5\)
= \(\left(5-\frac{1}{4}\right)x^2y^5\)
= \(\frac{19}{4}x^2y^5.\)
Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.
Chúc bạn học tốt!
a) \(\left|x\right|+\frac{1}{4}=\frac{1}{5}\)
\(\left|x\right|=\frac{1}{5}-\frac{1}{4}\)
\(\left|x\right|=\frac{-1}{20}\)(vô lý vì \(\left|x\right|\ge0\)với mọi x . Mà \(\frac{-1}{20}\)>0 )
Vậy không tồn tại x
b)\(\left|x+2\right|-\frac{1}{12}=\frac{1}{4}\)
\(\left|x+2\right|=\frac{1}{4}+\frac{1}{12}\)
\(\left|x+2\right|=\frac{1}{3}\)
\(\Rightarrow x+2\varepsilon\left\{\frac{1}{3};\frac{-1}{3}\right\}\)
+)\(x+2=\frac{1}{3}\Rightarrow x=\frac{-5}{3}\) +)\(x+2=\frac{-1}{3}\Rightarrow x=\frac{-7}{3}\)
Vậy \(x=\frac{-5}{3}\)hoặc \(x=\frac{-7}{3}\)
c)\(\left|x+5\right|=\frac{1}{7}-\left|\frac{4}{3}-\frac{1}{6}\right|\)
\(\left|x+5\right|=\frac{1}{7}-\frac{7}{6}\)
\(\left|x+5\right|=\frac{-43}{42}\)( vô lý vì \(\left|x+5\right|\ge0\)với mọi x , mà \(\frac{-43}{42}< 0\))
Vậy không tồn tại x
d)\(\left|x+\frac{5}{6}\right|=\left|\frac{1}{5}-\frac{2}{3}\right|+\frac{-3}{4}\)
\(\left|x+\frac{5}{6}\right|=\frac{7}{15}+\frac{-3}{4}\)
\(\left|x+\frac{5}{6}\right|=\frac{-17}{60}\)( Vô lý vì \(\left|x+\frac{5}{6}\right|\ge0\)với mọi x mà \(\frac{-17}{60}< 0\))
Vậy không tồn tại x
3. a) \(đk:x\ne1;x\ne-2\)
Ta có: \(A=\frac{3x-3+2}{x-1}=\frac{3\left(x-1\right)+2}{x-1}=3+\frac{2}{x-1}\)
Để A là số nguyên thì x là số nguyên và x-1 là ước của 2 . Ta có bảng:
x-1 | 1 | -1 | 2 | -2 |
x | 2 | 0 | 3 | -1 |
Lại có: \(B=\frac{2x^2+4x-3x-6+5}{x+2}=\frac{2x\left(x+2\right)-3\left(x+2\right)+5}{x+2}=2x-3+\frac{5}{x+2}\)
Để B là số nguyên thì x là số nguyên và x+2 là ước của 5. Ta có bảng:
x+2 | 1 | -1 | 5 | -5 |
x | -1 | -3 | 3 | -7 |
b) Để A và B cùng nguyên thì \(x\in\left\{-1;3\right\}\)