\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{99\cdot100}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2016

1/1.2 + 1/2.3 + 1/3.4 +......+1/99.100

= 1/1 + -1/2 + 1/2 + -1/3 + 1/3 + -1/4 +1/4 +.....+ -1/99 + 1/99 + -1/100 

= [ ( -1/2 +1/2) +( -1/3+1/3) + (-1/4 + 1/4) +..... +( -1/99+1/99 ) ] + ( 1/1 + -1/100 ) 

= 0 + 99/100

= 99/100

11 tháng 7 2016

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{99}-\frac{1}{100}\)

\(=\frac{1}{1}-\frac{1}{100}=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)

19 tháng 2 2017

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}=\frac{1}{k}.\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)=\frac{1}{k}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Leftrightarrow\frac{1}{2}=\frac{1}{k}\Rightarrow k=2\)

19 tháng 2 2017

k=2

chuan 100%ok

4 tháng 4 2017

A=1/100

4 tháng 4 2017

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

\(A=\frac{99}{100}\)

27 tháng 6 2015

\(\frac{2}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2-n}{n\left(n+1\right)\left(n+2\right)}=\frac{n+2}{n\left(n+1\right)\left(n+2\right)}-\frac{n}{n\left(n+1\right)\left(n+2\right)}=\frac{1}{n\left(n+1\right)}-\frac{1}{n\left(n+2\right)}\)

\(\Rightarrow\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\)

\(=\frac{1}{1.2}-\frac{1}{99.100}\)

\(\Rightarrow\frac{1}{1.2.3}+...+\frac{1}{98.99.100}=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{99.100}\right)\)

\(\Rightarrow k=2\)

9 tháng 1 2016

\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

Xét thấy: \(\frac{1}{1.2}=\frac{1}{1}-\frac{1}{2};\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3};.....\)

\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-...-\frac{1}{100}=1-\frac{1}{100}=\frac{99}{100}\)

9 tháng 1 2016

A=1/1.2+1/2.3+1/3.4+...+1/99.100

=1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

=1/1-1/100=100/100-1/100=99/100

 Vậy A=99/100

26 tháng 6 2017

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}\)

26 tháng 6 2017

nhanh lên nha mấy bn ai trả lời dcd thì kb với mình nha

9 tháng 1 2017

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)

\(=\frac{1}{2}\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{100-98}{98.99.100}\right)=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)

\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{9900}\right)=\frac{1}{2}.\frac{4949}{9900}=\frac{4949}{18000}\)

9 tháng 3 2017

=1-/2-1/3+1/2-1/3-1/4+1/5-1/6-1/7+1/6-1/7-1/8-.........-1/98-1/99-1/100

=1-1/100

=99/100

19 tháng 4 2015

A = \(\frac{\left(1.2.3......99\right)\left(1.2.3......99\right)}{\left(1.2.3......99\right)\left(2.3.4.....100\right)}=\frac{1.1}{1.100}=\frac{1}{100}\)