\(\sqrt[3]{49+20\sqrt{6}}+\sqrt[3]{49-20\sqrt{6}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2019

49 + 20 căn 6 =  25 + 2.5.(2 căn 6) +24 =  (5 + 2 căn 6)2

tương tự vs 49 - 20 căn 6 = (5 - 2 căn 6)2 =) căn ( 49 - 20 căn 6 ) = 5 - 2 căn 6

7 - 4 căn 3 = 4 - 4 căn 3 + 3 = (2 - căn 3)2  =) căn ( 7 - 4 căn 3 ) = 2 - căn 3

tự giải nhé

8 tháng 10 2017

a) \(\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}=\sqrt[4]{25+2\sqrt{600}+24}+\sqrt[4]{25-2\sqrt{600}+24}\\ =\sqrt[4]{\left(\sqrt{25}+\sqrt{24}\right)^2}+\sqrt[4]{\left(\sqrt{25}-\sqrt{24}\right)^2}=\sqrt{\sqrt{25}+\sqrt{24}}+\sqrt{\sqrt{25}-\sqrt{24}}\\ =\sqrt{5+2\sqrt{6}}+\sqrt{5-2\sqrt{6}}=\sqrt{3+2\sqrt{6}+2}+\sqrt{3-2\sqrt{6}+2}\\ =\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}\\ =2\sqrt{3}\)

25 tháng 7 2020

Trả lời:

\(\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}=2\sqrt{3}\)

Ta có:\(VT=\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}\)

                \(=\sqrt[4]{25+20\sqrt{6}+24}+\sqrt[4]{25-20\sqrt{6}+24}\)

                \(=\sqrt[4]{\left(5+2\sqrt{6}\right)^2}+\sqrt[4]{\left(5-2\sqrt{6}\right)^2}\)

                \(=\sqrt{5+2\sqrt{6}}+\sqrt{5-2\sqrt{6}}\)

                \(=\sqrt{3+2\sqrt{6}+2}+\sqrt{3-2\sqrt{6}+2}\)

                \(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}\)

                \(=\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}\)

                \(=2\sqrt{3}=VP\) 

Vậy \(\sqrt[4]{49+20\sqrt{6}}+\sqrt[4]{49-20\sqrt{6}}=2\sqrt{3}\)

25 tháng 7 2020

rộp rộp

9 tháng 9 2016

\(\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}\)\(2\sqrt{3}\)

10 tháng 9 2016

\(49+20\sqrt{6}=25+2.5.2\sqrt{6}+24=\left(5+2\sqrt{6}\right)^2=\left(3+2.\sqrt{3}\sqrt{2}+2\right)^2=\left(\sqrt{3}+\sqrt{2}\right)^4\)

\(\Leftrightarrow\sqrt[4]{49+20\sqrt{6}}=\sqrt{3}+\sqrt{2}\)

tuiwng tự \(\Leftrightarrow\sqrt[4]{49-20\sqrt{6}}=\sqrt{3}-\sqrt{2}\)

=> Cộng lại  = > dpcm

3 tháng 8 2017

a. \(\sqrt{49-20\sqrt{6}}-\sqrt{106+20\sqrt{6}}=\sqrt{\left(5-2\sqrt{6}\right)^2}-\sqrt{\left(10+\sqrt{6}\right)^2}=5-2\sqrt{6}-10-\sqrt{6}=-5-3\sqrt{6}\)

b. \(\sqrt{83-20\sqrt{6}}+\sqrt{62-20\sqrt{6}}=\sqrt{\left(5\sqrt{3}-2\sqrt{2}\right)^2}+\sqrt{\left(5\sqrt{2}-2\sqrt{3}\right)^2}=5\sqrt{3}-2\sqrt{2}+5\sqrt{2}-2\sqrt{3}=3\sqrt{3}+3\sqrt{2}\)

c. \(\sqrt{302-20\sqrt{6}}+\sqrt{203-20\sqrt{6}}=\sqrt{\left(10\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(10\sqrt{2}-\sqrt{3}\right)^2}=10\sqrt{3}-\sqrt{2}+10\sqrt{2}-\sqrt{3}=9\sqrt{3}+9\sqrt{2}\)

d. \(\sqrt{601-20\sqrt{6}}-\sqrt{154-20\sqrt{6}}=\sqrt{\left(10\sqrt{6}-1\right)^2}-\sqrt{\left(5\sqrt{6}-2\right)^2}=10\sqrt{6}-1-5\sqrt{6}+2=1+5\sqrt{6}\)

13 tháng 8 2016

\(\left(\sqrt{2}+\sqrt{3}\right)^2\sqrt{49-20\sqrt{6}}=\left(\sqrt{2}+\sqrt{3}\right)^2.\sqrt{\left(2\sqrt{6}-5\right)^2}\)

\(=\left(5+2\sqrt{6}\right).\left(5-2\sqrt{6}\right)=5^2-\left(2\sqrt{6}\right)^2=25-24=1\)

13 tháng 8 2016

\(\left(\sqrt{2}+\sqrt{3}\right)^2.\sqrt{49-20\sqrt{6}}=\left(\sqrt{2}+\sqrt{3}\right)\sqrt{25-20\sqrt{6}+24}\)

\(=\left(\sqrt{2}+\sqrt{3}\right).\sqrt{\left(5-2\sqrt{6}\right)^2}=\left(\sqrt{2}+\sqrt{3}\right).\left|5-2\sqrt{6}\right|\)

\(=\left(\sqrt{2}+\sqrt{3}\right)\left(5-2\sqrt{6}\right)=5\sqrt{2}+5\sqrt{3}-2\sqrt{12}-2\sqrt{18}\)

\(=5\sqrt{2}+5\sqrt{3}-4\sqrt{3}-6\sqrt{2}=\sqrt{3}-\sqrt{2}\)

\(A=\sqrt{47+\sqrt{5}}\cdot\sqrt{47-\sqrt{5}}\)

\(=\sqrt{2204}=2\sqrt{551}\)

\(B=5-2\sqrt{6}+10+\sqrt{6}=15-\sqrt{6}\)