Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1\frac{13}{15}\cdot3\cdot(0,5)^2\cdot3+\left[\frac{8}{15}-1\frac{19}{60}:1\frac{23}{24}\right]\)
\(=\frac{28}{15}\cdot3\cdot0,5\cdot0,5\cdot3+\left[\frac{8}{15}-\frac{79}{60}:\frac{47}{24}\right]\)
\(=\frac{28}{5}\cdot0,25\cdot3+\left[\frac{32}{60}-\frac{79}{60}\cdot\frac{24}{47}\right]\)
\(=\frac{28}{5}\cdot\frac{25}{100}\cdot3+\left[\frac{32}{60}-\frac{158}{235}\right]\)
\(=\frac{28}{5}\cdot\frac{1}{4}\cdot3+\frac{-98}{705}=\frac{7}{5}\cdot1\cdot3+\frac{-98}{705}\)
Đến đây là tính dễ rồi :v
\((-3,2)\cdot\frac{-15}{64}+\left[0,8-2\frac{4}{15}\right]:1\frac{23}{24}\)
\(=\frac{-32}{10}\cdot\frac{-15}{64}+\left[\frac{8}{10}-\frac{34}{15}\right]:\frac{47}{24}\)
\(=\frac{-32\cdot(-15)}{10\cdot64}+\left[\frac{4}{5}-\frac{34}{15}\right]:\frac{47}{24}\)
\(=\frac{-1\cdot(-3)}{2\cdot2}+\frac{4\cdot3-34}{15}:\frac{47}{24}\)
\(=\frac{3}{4}+\frac{-22}{15}:\frac{47}{24}\)
\(=\frac{3}{4}+\frac{-517}{180}=\frac{-191}{90}\)
Bài 2 : \(\frac{2\cdot(-13)\cdot9\cdot10}{(-3)\cdot4\cdot(-5)\cdot26}=\frac{1\cdot(-1)\cdot3\cdot2}{(-1)\cdot2\cdot(-1)\cdot2}=\frac{1\cdot3}{-1\cdot2}=\frac{3}{-2}=\frac{-3}{2}\)
\(\frac{15\cdot8+15\cdot4}{12\cdot3}=\frac{15\cdot(8+4)}{12\cdot3}=\frac{15\cdot12}{12\cdot3}=\frac{15}{3}=5\)
\(A=\frac{17}{23}\cdot\frac{8}{16}\cdot\frac{23}{17}\cdot\left(-80\right)\cdot\frac{3}{4}\)\(=\frac{17\cdot4\cdot2\cdot23\cdot16\cdot\left(-5\right)\cdot3}{23\cdot16\cdot17\cdot4}\)
=> \(A=\frac{2\cdot\left(-5\right)\cdot3}{1}=-30\)
\(B=\left(\frac{13}{23}+\frac{1313}{2323}-\frac{131313}{232323}\right)\left(\frac{1}{3}+\frac{1}{4}-\frac{7}{12}\right)\)
=> \(B=\left(\frac{13}{23}+\frac{1313}{2323}-\frac{131313}{232323}\right)\left(\frac{7}{12}-\frac{7}{12}\right)\)
=> \(B=\left(\frac{13}{23}+\frac{1313}{2323}-\frac{131313}{232323}\right)\cdot0=0\)
a) \(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\) \(=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}+\frac{\frac{5}{12}}{\frac{55}{12}}\)
\(=\frac{2}{3}+\frac{1}{11}=\frac{25}{33}\)
b) \(\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)....\left(1-\frac{10}{7}\right)=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right)...\left(1-\frac{7}{7}\right).\left(1-\frac{8}{7}\right).\left(1-\frac{9}{7}\right).\) \(\left(1-\frac{10}{7}\right)\) = 0
a)\(\frac{\frac{2}{7}+\frac{2}{5}+\frac{2}{17}+\frac{2}{293}}{\frac{3}{7}+\frac{3}{5}+\frac{3}{17}+\frac{3}{293}}+\frac{\frac{7}{12}+\frac{5}{6}-1}{5-\frac{3}{4}+\frac{1}{3}}\)
\(=\frac{2\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}{3\left(\frac{1}{7}+\frac{1}{5}+\frac{1}{17}+\frac{1}{293}\right)}+\frac{\frac{7}{12}+\frac{10}{12}-\frac{12}{12}}{\frac{60}{12}-\frac{9}{12}+\frac{4}{12}}\)
\(=\frac{2}{3}+\frac{\frac{5}{12}}{\frac{55}{12}}\)
\(=\frac{2}{3}+\frac{1}{11}\)
\(=\frac{25}{33}\)
b)\(\left(1-\frac{1}{7}\right)\cdot\left(1-\frac{2}{7}\right)\cdot...\cdot\left(1-\frac{10}{7}\right)\)
Ta nhận thấy trong tích này có 1 thừa số là\(\left(1-\frac{7}{7}\right)=0\)nên tích trên sẽ bằng 0.
a)\(A=\frac{17}{23}.\frac{8}{16}.\frac{23}{17}.\left(-80\right).\frac{3}{4}\)
\(A=\left(\frac{17}{23}.\frac{23}{17}\right).\left(\frac{8}{16}.\frac{3}{4}\right).\left(-80\right)\)
\(A=\frac{3}{8}.\left(-80\right)\)
\(A=-30\)
b)\(C=\left(\frac{13}{23}+\frac{1313}{2323}-\frac{131313}{232323}\right).\left(\frac{1}{3}+\frac{1}{4}-\frac{7}{12}\right)\)
\(C=\left(\frac{13}{23}+\frac{1313}{2323}-\frac{131313}{232323}\right).0\)
\(C=0\)
\(\frac{23.2323.29}{23.292929}=\frac{23.23.101.29}{23.10101.29}=\frac{23.101}{10101}=\frac{2323}{10101}\)