Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
Gọi chữ số nhỏ nhất là x
=> Ba chữ số theo tỉ lệ là: x, 2x, 3x với 3x ≤ 9
=> x ≤ 3 (1)
Vì số cần tìm chia hết cho 18, nghĩa là chia hết cho 9
Nên (x + 2x + 3x) = 6x chia hết cho 9
=> x chia hết cho 3 (2)
Từ (1) & (2), suy ra: x = 3
=> Ba chữ số là 3, 6, 9
Theo đề bài số cần tìm chia hết cho 18 (18 là số chẵn), nghĩa là chia hết cho 2, vậy chữ số cuối phải là 6
=> Số cần tìm là 396 hoặc 936
Gọi số cần tìm là abc.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{1}=\frac{b}{2}=\frac{c}{3}=\frac{a+b+c}{1+2+3}=\frac{18}{6}=3\)
Ta có:
- \(\frac{a}{1}=3\Rightarrow a=3\)
- \(\frac{b}{2}=3\Rightarrow b=6\)
- \(\frac{c}{3}=3\Rightarrow c=9\)
Vậy số cần tìm là 369
Gọi số cần tìm có dạng là \(\overline{abc}\) và a+b+c chia hết cho9; a/1=b/2=c/3
TH1: a+b+c=9
=>a/1=b/2=c/3=(a+b+c)/(1+2+3)=9/6=3/2(loại)
TH2: a+b+c=18
=>a/1=b/2=c/3=18/6=3
=>a=3; b=6; c=9
Vì abc chia hết cho 18 nên c chia hết cho 2
=>c=6
Vậy; S={396; 936}
Gọi chữ số nhỏ nhất là a => số có 3 chữ số là a, 2a, 3a với 3a ≤ 9 => a ≤ 3. Do số cần tìm chia hết cho 18, tức chia hết cho 9 nên (a + 2a + 3a) = 6a chia hết cho 9 => a chia hết cho 3, vậy a = 3 => 3 chữ số là 3, 6, 9
Số cần tìm là số chẵn do chia hết cho 2 vậy chữ số cuối là 6
=> số cần tìm là 396 hoặc 936
Gọi chữ số nhỏ nhất là x
=> Ba chữ số theo tỉ lệ là: x, 2x, 3x với 3x ≤ 9
=> x ≤ 3 (1)
Vì số cần tìm chia hết cho 18, nghĩa là chia hết cho 9
Nên (x + 2x + 3x) = 6x chia hết cho 9
=> x chia hết cho 3 (2)
Từ (1) & (2), suy ra: x = 3
=> Ba chữ số là 3, 6, 9
Theo đề bài số cần tìm chia hết cho 18 (18 là số chẵn), nghĩa là chia hết cho 2, vậy chữ số cuối phải là 6
=> Số cần tìm là 396 hoặc 936
gọi chữ số nhỏ nhất phải tìm là a => số có 3 chữ số phải tìm là a;2a;3a với 3a \(\le\)9=> a\(\le\)3. Do số phải tìm chia hết cho 18 tức chia hết cho 9 nên \(\left(a+2a+3a\right)=6a\)chia hết cho 9 => a chia hết cho 3 vậy a=3 => 3 chữ số là 3;6;9
Số cần tìm là số chẵn nên chữ số cuối là 6
=> số cần tìm là 396 hoặc 936
Gọi số đó có dạng abc (Số có 3 chữ số)
Vì abc chia hết cho 18 => abc chia hết cho 9 => a + b + c chia hết cho 9
Mà 1 ≤ a + b + c ≤ 27 (DO a, b, c nhận các giá trị tự nhiện từ 1 đến 9)
=> a + b + c nhận một trong ba số: 9; 18; 27 (*)
Mà a/1 = b/2 = c/3 = (a + b + c)/6 (**)
Từ (*) và (**) ta có (a + b + c) =18 (Chia hết cho 6)
=> a/1 = b/2 = c/3 = (a + b + c)/6 = 18/6 =3
=> a = 3; b = 6; c = 9
Nhưng vì số đó chia hết cho 18 nên chữ số hàng đơn vị là 6
Vậy ta có 2 đáp số thỏa mãn: 396 và 936
Gọi số cần tìm có dạng là \(\overline{abc}\) và a+b+c chia hết cho9; a/1=b/2=c/3
TH1: a+b+c=9
=>a/1=b/2=c/3=(a+b+c)/(1+2+3)=9/6=3/2(loại)
TH2: a+b+c=18
=>a/1=b/2=c/3=18/6=3
=>a=3; b=6; c=9
Vì abc chia hết cho 18 nên c chia hết cho 2
=>c=6
Vậy; S={396; 936}
gọi chữ số nhỏ nhất là \(h\)
\(\Rightarrow3\)chữ số theo tỉ lệ là \(h,2h,3h\) với \(3h\le9\)
\(\Rightarrow h\le3\)
theo giả thiết \(h⋮8\) hay \(h⋮9\)
nên \(\left(h+2h+3h\right)=6h\)\(⋮9\)
\(\Rightarrow h⋮3\)
\(\Rightarrow h=3\)
\(\Rightarrow3\)chữ số là \(3;6;9\)
theo giả thiết \(h⋮18\) hay \(h⋮2\)vậy chữ số cuối cùng là \(6\)( số chẵn)
\(\Rightarrow\orbr{\begin{cases}h=396\\h=936\end{cases}}\)
Gọi chữ số nhỏ nhất là a => số có 3 chữ số là a, 2a, 3a với 3a ≤ 9 => a ≤ 3. Do số cần tìm chia hết cho 18, tức chia hết cho 9 nên (a + 2a + 3a) = 6a chia hết cho 9 => a chia hết cho 3, vậy a = 3 => 3 chữ số là 3, 6, 9
Số cần tìm là số chẵn do chia hết cho 2 vậy chữ số cuối là 6
=> số cần tìm là 396 hoặc 936
369 hoặc 936
giải thích nx chứ bn