Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{1}{2}-|\frac{5}{4}-2x|=\frac{1}{3}\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{4}-2x=\frac{1}{6}\\\frac{5}{4}-2x=-\frac{1}{6}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{5}{4}-\frac{1}{6}=\frac{13}{12}\\2x=\frac{5}{4}+\frac{1}{6}=\frac{17}{12}\end{cases}}}\)
Tự làm nốt và kết luận
b) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)
Vì \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)\ne0\forall x\Rightarrow x+1=0\Leftrightarrow x=-1\)
Vậy ....
mk làm mẫu 2 bài đầu nhé, các bài còn lại bạn làm tương tự, các bài này đều áp dụng tính chất dãy tỉ số bằng nhau
1) Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)
suy ra: \(\frac{x}{3}=2\)=> \(x=6\)
\(\frac{y}{4}=2\)=> \(y=8\)
Vậy...
2) Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{5}=\frac{y}{3}=\frac{x-y}{5-3}=\frac{20}{2}=10\)
suy ra: \(\frac{x}{5}=10\)=> \(x=50\)
\(\frac{y}{3}=10\)=> \(y=30\)
Vậy...
a) Aps dụng tính chất các dãy tỉ số bằng nhau, ta có:
x/4 =y/3 = z/9 = 3y/9 = 4z/36 = (x-3y+4z)/(4-9+36)= 62/31 = 2
=> x=2.4=8
y=2.3=6
z=2.9=18
a) \(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}\)
ADTCCDTSBN, ta có:
\(\frac{x}{4}=\frac{y}{3}=\frac{z}{9}=\frac{x-3y+4z}{4-9+36}=\frac{62}{31}=2\)
\(\Rightarrow x=2.4=8\)
\(y=2.3=6\)
\(z=2.9=18\)
b) Đề có nhầm lẫn j k nhỉ =.=
c) \(5x=8y=20z\Leftrightarrow\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}\)
ADTCCDTSBN, ta có:
\(\frac{x}{\frac{1}{5}}=\frac{y}{\frac{1}{8}}=\frac{z}{\frac{1}{20}}=\frac{x+y+z}{\frac{1}{5}+\frac{1}{8}+\frac{1}{20}}=-\frac{15}{\frac{3}{8}}=-40\)
\(\Rightarrow x=-40:5=-8\)
\(y=-40:8=-5\)
\(z=-40:20=-2\)
a) Ta có: \(\frac{x}{12}=\frac{y}{3}.\)
=> \(\frac{x}{12}=\frac{y}{3}\) và \(x-y=36.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{x}{12}=\frac{y}{3}=\frac{x-y}{12-3}=\frac{36}{9}=4.\)
\(\left\{{}\begin{matrix}\frac{x}{12}=4=>x=4.12=48\\\frac{y}{3}=4=>y=4.3=12\end{matrix}\right.\)
Vậy \(\left(x;y\right)=\left(48;12\right).\)
b)
\(\frac{2}{3}+\frac{5}{3}x=\frac{5}{7}\)
⇒ \(\frac{5}{3}x=\frac{5}{7}-\frac{2}{3}\)
⇒ \(\frac{5}{3}x=\frac{1}{21}\)
⇒ \(x=\frac{1}{21}:\frac{5}{3}\)
⇒ \(x=\frac{1}{35}\)
Vậy \(x=\frac{1}{35}.\)
\(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
⇒ \(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
⇒ \(x-\frac{1}{2}=\frac{1}{3}\)
⇒ \(x=\frac{1}{3}+\frac{1}{2}\)
⇒ \(x=\frac{5}{6}\)
Vậy \(x=\frac{5}{6}.\)
Có 1 câu bạn đăng mình làm ở dưới rồi mà.
Chúc bạn học tốt!
a)áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{12}=\frac{y}{3}=\frac{x-y}{12-3}=\frac{36}{9}=4\)
\(\)x/12=4 suy ra x=12.4=48
y/3=4 suy ra y=3.4 =12
b)\(\frac{2}{3}+\frac{5}{3}x=\frac{5}{7}\)
\(\frac{5}{3}x=\frac{5}{7}-\frac{2}{3}\)
\(\frac{5}{3}x=\frac{1}{21}\)
\(x=\frac{1}{21}:\frac{5}{3}\)
\(x=\frac{1}{35}\)
\(\frac{11}{12}-\left(\frac{2}{5}+x\right)=\frac{2}{3}\)
\(\left(\frac{2}{5}+x\right)=\frac{11}{12}-\frac{2}{3}\)
\(\frac{2}{5}+x=\frac{1}{4}\)
\(x=\frac{1}{4}-\frac{2}{5}\)
\(x=\frac{-3}{20}\)
\(\left|x-\frac{2}{5}\right|+\frac{3}{4}=\frac{11}{4}\)
\(\left|x-\frac{2}{5}\right|=\frac{11}{4}-\frac{3}{4}\)
\(\left|x-\frac{2}{5}\right|=2\)
suy ra x-2/5=2 hoac x-2/5=-2
\(x-\frac{2}{5}=2\)
\(x=\frac{12}{5}\)
\(x-\frac{2}{5}=-2\)
\(x=\frac{-8}{5}\)
\(\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
\(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
\(x-\frac{1}{2}=\frac{1}{3}\)
\(x=\frac{1}{3}+\frac{1}{2}\)
\(x=\frac{5}{6}\)
x+(-31/12)^2=(49/12)^2-x
x+x=(49/12)^2-(-31/12)^2
tính x
từ x tìm ra y
b)x(x-y):[y(x-y)]=3/10:(-3/50)=...
=>x/y=... =>x=...;y=...
\(\frac{x+11}{13}=\frac{y+12}{14}=\frac{z+13}{15}.\)
\(\Rightarrow\frac{x+11}{13}=\frac{y+12}{14}=\frac{z+13}{15}=\frac{x+11+y+12+z+13}{13+14+15}=\frac{\left(x+y+z\right)+\left(11+12+13\right)}{42}\)
\(=\frac{6+36}{42}=\frac{42}{42}=1\) ( Áp dụng tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\hept{\begin{cases}\frac{x+11}{13}=1\\\frac{y+12}{14}=1\\\frac{z+13}{15}=1\end{cases}}\Rightarrow\hept{\begin{cases}x+11=13\\y+12=14\\z+13=15\end{cases}}\Rightarrow\hept{\begin{cases}x=2\\y=2\\z=2\end{cases}}\)
Vậy \(x=y=z=2\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+11}{13}=\frac{y+12}{14}=\frac{z+13}{15}=\frac{x+11+y+12+z+13}{13+14+15}\)
\(=\frac{\left(x+y+z\right)+\left(11+12+13\right)}{13+14+15}=\frac{16+36}{42}=\frac{42}{42}=1\)
\(\Rightarrow\frac{x+11}{13}=1\Rightarrow x+11=13\Rightarrow x=13-11=2\)
\(\Rightarrow\frac{y+12}{14}=1\Rightarrow y+12=14\Rightarrow y=14-12=2\)
\(\Rightarrow\frac{z+13}{15}=1\Rightarrow z+13=15\Rightarrow z=15-13=2\)
Vậy \(x=y=z=2\)
\(x:y:z=3:4:5\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\) và \(5z^2-3x^2-2y^2\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{5z^2-3x^2-2y^2}{5.5^2-3.3^2-2.4^2}=\frac{594}{66}=9\)
\(\Leftrightarrow\frac{x}{3}=9\Rightarrow x=9.3=27\)
\(\Leftrightarrow\frac{y}{4}=9\Rightarrow y=9.4=36\)
\(\Leftrightarrow\frac{z}{5}=9\Rightarrow z=9.5=45\)
Vậy x = 27 ; y = 36 ; z = 45
\(x+y=3\left(x-y\right)\)
\(\Rightarrow x+y=3x-3y\)
\(\Rightarrow y+3y=3x-x\)
\(\Rightarrow4y=2x\)
\(\Rightarrow2y=x\)
\(\Rightarrow x:y=2\)
\(\Rightarrow x+y=2y+y=2\)
\(\Rightarrow3y=2\)
\(\Rightarrow y=\frac{2}{3}\)
\(\Rightarrow x=\frac{4}{3}\)
Vậy \(x=\frac{4}{3};y=\frac{2}{3}\)
a) \(\frac{x}{y}=\frac{15}{7}\Leftrightarrow\)\(\frac{x}{15}=\frac{y}{17}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{15}=\frac{y}{17}=\frac{x-2y}{15-2\cdot17}=\frac{16}{-19}\)
=> \(\begin{cases}x=-\frac{240}{19}\\y=-\frac{272}{19}\end{cases}\)
b) \(\frac{x}{y}=\frac{8}{11};\frac{z}{y}=\frac{3}{11}\)
\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{11};\frac{z}{3}=\frac{y}{11}\)
\(\Leftrightarrow\)\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}=\frac{x+y-z}{8+11-3}=\frac{80}{16}=5\)
\(\Rightarrow\begin{cases}x=40\\y=55\end{cases}\)
c) \(\frac{x}{4}=\frac{y}{3}\Rightarrow\)\(\frac{x}{8}=\frac{y}{6}\)
=> \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\)
Đặt \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}=k\Rightarrow x=8k;y=6k;z=11k\)
Có \(xyz=-528\)
\(\Leftrightarrow8k\cdot6k\cdot11k=-528\)
\(\Leftrightarrow528\cdot k^3=-528\)
\(\Leftrightarrow k^3=-1\Leftrightarrow k=-1\)
Với k=-1 thì : x=-8;y=-6;x=-11
a) Từ \(\frac{x}{y}=\frac{15}{7}\Rightarrow\frac{x}{15}=\frac{y}{7}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\frac{x}{15}=\frac{y}{7}=\frac{x-2y}{15-14}=16\)
=> \(\begin{cases}x=240\\y=112\end{cases}\)
b) Từ \(\frac{x}{y}=\frac{8}{11}\Rightarrow\frac{x}{8}=\frac{y}{11}\)
\(\frac{z}{y}=\frac{3}{11}\Rightarrow\frac{z}{3}=\frac{y}{11}\)
=> \(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{x}{8}=\frac{y}{11}=\frac{z}{3}=\frac{x+y-z}{8+11-3}=\frac{80}{16}=5\)
=> \(\begin{cases}x=40\\y=55\\z=15\end{cases}\)
c)Từ \(\frac{x}{4}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{6}\)
=> \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\)
Đặt \(\frac{x}{8}=\frac{y}{6}=\frac{z}{11}\) = k
=> \(\begin{cases}x=8k\\y=6k\\z=11k\end{cases}\)
=> x.y.z = -528 => 8k.6k.11k = -528 => 528k3 = -528
=> k3 = -1 => k = -1
=> \(\begin{cases}x=-8\\y=-6\\z=-11\end{cases}\)
Ta có :
\(\frac{y+2}{11}+\frac{y+2}{12}+\frac{y+2}{13}=\frac{y+2}{14}+\frac{y+2}{15}\)
\(\Leftrightarrow\)\(\frac{y+2}{11}+\frac{y+2}{12}+\frac{y+2}{13}-\frac{y+2}{14}-\frac{y+2}{15}=0\)
\(\Leftrightarrow\)\(\left(y+2\right)\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)=0\)
Vì \(\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+\frac{1}{15}\right)\ne0\)
\(\Rightarrow\)\(y+2=0\)
\(\Rightarrow\)\(y=-2\)
Vậy \(y=-2\)
Chỗ trong ngoặc mk nhầm nhé phải là :
\(\left(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}-\frac{1}{14}-\frac{1}{15}\right)\) mới đúng sorry nha :')