K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2017

b. Ta có:

\(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}\)

\(4y=5z\Rightarrow\dfrac{y}{5}=\dfrac{z}{4}\Rightarrow\dfrac{y}{10}=\dfrac{z}{8}\)

\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{8}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{8}=\dfrac{4x-3y+5z}{15\cdot4-3\cdot10+5\cdot8}=\dfrac{7}{70}=\dfrac{1}{10}\)

\(\Rightarrow x=15\cdot\dfrac{1}{10}=\dfrac{3}{2}\)

\(y=\dfrac{1}{10}\cdot10=1\)

\(z=\dfrac{1}{10}\cdot8=\dfrac{4}{5}\)

Vậy \(x=\dfrac{3}{2};y=1;z=\dfrac{4}{5}\)

Kêu người ta giúp mà ói vào mặt người ta vậy à?

10 tháng 8 2017

Bất lịch sự ucche

26 tháng 10 2017

\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\Rightarrow\dfrac{2x}{3}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{3z}{\dfrac{15}{4}}\)

Áp dụng t/c dãy tỉ số bằng nhau , ta có :

\(\dfrac{2x}{3}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{3z}{\dfrac{15}{4}}=\dfrac{2x+y-3z}{3+\dfrac{4}{3}-\dfrac{15}{4}}=\dfrac{14}{\dfrac{7}{12}}=24\)

\(\Rightarrow\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}=24\)

\(\Rightarrow\left\{{}\begin{matrix}2x=72\\3y=96\\4z=120\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=36\\y=32\\z=30\end{matrix}\right.\)

26 tháng 10 2017

Từ \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)

=> \(\dfrac{2x}{36}=\dfrac{3y}{48}=\dfrac{4z}{60}\)

=> \(\dfrac{2x}{36}=\dfrac{y}{16}=\dfrac{z}{15}\)

=> \(\dfrac{2x}{36}=\dfrac{y}{16}=\dfrac{3z}{45}\)

Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{2x}{36}=\dfrac{y}{16}=\dfrac{3z}{45}=\dfrac{2x+y-3z}{36+16-45}=\dfrac{14}{7}=2\)

Từ \(\dfrac{2x}{36}=2,=>x=\dfrac{2.36}{2}=36\)

\(\dfrac{y}{16}=2,=>y=2.16=32\)

\(\dfrac{3z}{45}=2,=>z=\dfrac{45.2}{3}=30\)

Vậy x=36 ,y=32 ,z=30

7 tháng 8 2017

Bài 2:

a) Ta có : Từ \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{5a}{5c}=\dfrac{7b}{7d}\)

Theo tính chất dãy tỉ số bằng nhau, ta có :

\(\dfrac{5a}{5c}=\dfrac{7b}{7d}=\dfrac{5a+7b}{5c+7d}\left(1\right)\)

\(\dfrac{5a}{5c}=\dfrac{7b}{7d}=\dfrac{5a-7b}{5c-7d}\left(2\right)\)

Từ (1) và (2)=> \(\dfrac{5a+7b}{5c+7d}=\dfrac{5a-7b}{5c-7d}\Rightarrow\dfrac{5a+7b}{5a-7b}=\dfrac{5c+7d}{5c-7d}\)Vậy...

b) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)

Thay các đẳng thức vừa tìm được , ta có :

\(\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=k^2\left(1\right)\)

\(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{b^2k^2+d^2k^2}{b^2+d^2}\)

\(=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)

từ (1) và (2)=> đpcm

tik mik nha !!!

7 tháng 8 2017

1. Bạn xem lại đề bài nhé! Mình nghĩ là \(2x=3y=5z\) thì đúng hơn!

2.

a) Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)

\(\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

\(\Rightarrow\dfrac{5a}{5c}=\dfrac{7b}{7d}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{5a}{5c}=\dfrac{7b}{7d}=\dfrac{5a+7b}{5c+7d}=\dfrac{5a-7b}{5c-7d}\)

Từ \(\dfrac{5a+7b}{5c+7d}=\dfrac{5a-7b}{5c-7d}\Rightarrow\dfrac{5a+7b}{5a-7b}=\dfrac{5c+7d}{5c-7d}\)(đpcm)

Vậy \(\dfrac{5a+7b}{5a-7b}=\dfrac{5c+7d}{5c-7d}\)

b) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)

\(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có:

\(VT=\dfrac{ac}{bd}=\dfrac{bk.dk}{bd}=\dfrac{bd.k^2}{bd}=k^2\left(1\right)\)

\(VP=\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{b^2.k^2+d^2.k^2}{b^2+d^2}=\dfrac{k^2.\left(b^2+d^2\right)}{b^2+d^2}=k^2\left(2\right)\)
Từ \(\left(1\right)\)\(\left(2\right)\)

\(\Rightarrow\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\left(đpcm\right)\)

Vậy \(\dfrac{ac}{bd}=\dfrac{a^2+c^2}{b^2+d^2}\)

28 tháng 7 2017

c, \(\left(7-3x\right)\left(2x+1\right)=0\)

=> \(7-3x=0\) hoặc \(2x+1=0\)

\(3x=7-0\) hoặc \(2x=0-1\)

\(3x=7\) hoặc \(2x=-1\)

\(x=7:3\) hoặc \(x=-1:2\)

\(x=\dfrac{7}{3}\) hoặc \(x=-0,5\)

Vậy, \(x\in\left\{\dfrac{7}{3};-0,5\right\}\)

29 tháng 10 2017

a)hình như đề sai thì phải

sửa lại

\(\left(\dfrac{1}{7}-\dfrac{2}{5}\right).\dfrac{2016}{2017}+\left(\dfrac{13}{7}+\dfrac{2}{5}\right).\dfrac{2016}{2017}\)

=\(\dfrac{2016}{2017}.\left(\dfrac{1}{7}-\dfrac{2}{5}+\dfrac{13}{7}+\dfrac{2}{5}\right)\)

=\(\dfrac{2016}{2017}.2=\dfrac{4032}{2017}\)

24 tháng 2 2017

Đặt \(\frac{x}{18}=\frac{y}{9}=k\)

\(\Rightarrow x=18k;y=9k\)

Thay vào P ta được:

\(P=\frac{2.18k-3.9k}{2.18k+3.9k}\)

\(\Rightarrow P=\frac{36k-27k}{36k+27k}\)

\(\Rightarrow P=\frac{k\left(36-27\right)}{k\left(36+27\right)}\)

\(\Rightarrow P=\frac{9k}{63k}\)

\(\Rightarrow P=\frac{1}{7}\)

Vậy \(P=\frac{1}{7}.\)

16 tháng 11 2017

ủa sao ngộ z ?

16 tháng 11 2017

bn dợi mk lát nhé

12 tháng 8 2016

a) Đặt \(\frac{x}{3}=\frac{y}{4}=k\)

=> \(x=3k\)  ;  \(y=4k\)

Ta có:

\(x^2+y^2=100\)

=> \(\left(3k\right)^2+\left(4k\right)^2=100\)

=> \(9k^2+16k^2=100\)

=> \(k^2.\left(9+16\right)=100\)

=> \(k^2.25=100\)

=> \(k^2=100:25=4\)

=>\(\left[\begin{array}{nghiempt}k=2\\k=-2\end{array}\right.\)

Với \(k=2\) thì \(x=6\) và \(y=8\)

Với k=-2 thì x=-6 và y=-8

12 tháng 8 2016

a) từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}\)

Áp dụng t/c dãy tỉ số bằng nhau : 

\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)

\(\Rightarrow\begin{cases}x^2=36\\y^2=64\end{cases}\) \(\Rightarrow\begin{cases}x=\pm6\\y=\pm8\end{cases}\)

b) Đặt \(\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{6}=k\)

\(\Rightarrow x=2k-1;y=4k-3;z=6k-5\)

thay vào giả thiết 2x+3y+4z=9 được : 

\(2\left(2k-1\right)+3\left(4k-3\right)+4\left(6k-5\right)=9\)

\(\Leftrightarrow40k=40\Leftrightarrow k=1\)

Với k = 1 \(\Rightarrow\begin{cases}x=2.1-1=1\\y=4.1-3=1\\z=6.1-5=1\end{cases}\)

c) Ta có : \(2x=3y=-2z\Rightarrow\frac{2x}{1}=\frac{3y}{1}=\frac{-4z}{2}\)

Áp dụng t/c dãy tỉ số bằng nhau : 

\(\frac{2x}{1}=\frac{3y}{1}=-\frac{4z}{2}=\frac{2x-3y+4z}{1-1-2}=\frac{48}{-2}=-24\)

\(\Rightarrow\begin{cases}x=-12\\y=-8\\z=12\end{cases}\)