\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{y+z-2}=x+y+z\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2018

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{x}{y+x+1}=\frac{y}{x+z+1}=\frac{z}{y+z-2}=\frac{x+y+z}{2.\left(x+y+z\right)}=\frac{1}{2}\)

Hay x + y + z = \(\frac{1}{2}\)

\(\frac{x}{y+z+1}=\frac{1}{2}=>2x=y+z+1+=>3x=x+y+z+1=\frac{3}{2}\)

Tương tự tính y = 3/2

                        z = -3/2

9 tháng 2 2020

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+1+x+z+1+x+y-2}\) \(=\frac{x+y+z}{2\left(x+y+z\right)}\)

TH1: Nếu \(x+y+z=0\Rightarrow x=y=z=0\)

TH2: Nếu \(x+y+z\ne0\Rightarrow x+y+z=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

+) \(\frac{x}{y+z+1}=\frac{1}{2}\Rightarrow2x=y+z+1=\frac{1}{2}-x+1=\frac{3}{2}-x\)

\(\Rightarrow2x+x=\frac{3}{2}\Rightarrow3x=\frac{3}{2}\Rightarrow x=\frac{3}{2}:3\Rightarrow x=\frac{1}{2}\)

+)\(\frac{y}{x+z+1}=\frac{1}{2}\Rightarrow2y=x+z+1=\frac{1}{2}-y+1=\frac{3}{2}-y\)

\(\Rightarrow2y+y=\frac{3}{2}\Rightarrow3y=\frac{3}{2}\Rightarrow y=\frac{3}{2}:3\Rightarrow y=\frac{1}{2}\)

+) \(\frac{z}{x+y-2}=\frac{1}{2}\Rightarrow2z=x+y-2=\frac{1}{2}-z-2=-\frac{3}{2}-z\)

\(\Rightarrow2z+z=\frac{-3}{2}\Rightarrow3z=\frac{-3}{2}\Rightarrow z=\frac{-3}{2}:3\Rightarrow z=\frac{-1}{2}\)

Vậy \(\left(x,y,z\right)=\left(0,0,0\right)\) hoặc \(\left(\frac{1}{2},\frac{1}{2},\frac{-1}{2}\right)\)

31 tháng 7 2020

ta có \(\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z}{z}\)

\(\Rightarrow\frac{y+x}{z}-1=\frac{z+x}{y}-1=\frac{x+y}{z}-1\)

\(\Rightarrow\frac{y+z}{x}=\frac{z+x}{y}=\frac{x+y}{z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

31 tháng 7 2020

a,Sử dụng tính chất của dãy tỉ số bằng nhau

 \(\frac{x+y+2020}{z}=\frac{y+z-2021}{x}=\frac{z+x+1}{y}=\frac{x+y+y+z+z+x}{x+y+z}=2\)

\(< =>\frac{2}{x+y+z}=2< =>x+y+z=1\)

11 tháng 10 2019

Ta có

\(\frac{x}{y}=\frac{3}{2};5x=7z\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{x}{7}=\frac{z}{5}\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{x}{10}=\frac{2y}{28}\)

Ap dụng  tính chất DTSBN

\(\frac{x}{21}=\frac{2y}{28}=\frac{z}{10}=\frac{x-2y+z}{21-28+10}=\frac{32}{3}\)

\(\hept{\begin{cases}\frac{x}{21}=\frac{32}{3}\Rightarrow x=224\\\frac{y}{14}=\frac{32}{3}\Rightarrow x=\frac{448}{3}\\\frac{z}{10}=\frac{32}{3}\Rightarrow x=\frac{320}{3}\end{cases}}\)

Bạn kiểm tra lại đề xem có sai, còn nếu mik sai thì mn kiểm tra xem sai ở đâu với

11 tháng 10 2019

Bạn còn thiếu 1 câu b mà

13 tháng 1 2017

 x = 5

y = 7

z = 14

3 tháng 2 2017

x;y;z có 2 giá trị: \(x=\frac{1}{2};y=\frac{1}{2};z=\frac{-1}{2}\) và \(x=0;y=0;z=0\)

11 tháng 6 2017

Áp dụng TCDTS BN ta có :

\(\frac{x}{y+z+1}=\frac{y}{z+x+1}=\frac{z}{x+y-2}=\frac{x+y+z}{\left(y+z+1\right)+\left(z+x+1\right)+\left(x+y-2\right)}\)

\(=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

\(\Rightarrow x+y+z=\frac{1}{2};y+z+1=2x;z+x+1=2y;x+y-2=2z\)

\(\Rightarrow\hept{\begin{cases}x+y+z+1=3x\\x+y+z+1=3y\\x+y+z-2=3z\end{cases}\Rightarrow\hept{\begin{cases}\frac{1}{2}+1=3x\\\frac{1}{2}+1=3y\\\frac{1}{2}-2=3z\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}}\)

11 tháng 6 2017

Xét x+y+z=0=>x=0(y+z+1)=0

                       y=0(z+x+1)=0

                       z=0(x+y-2)=0

Xét x+y+z khác 0,theo tính chất dãy tỉ số bằng nhau ta có:x/(y+z+1)=y/(z+x+1)=z/(x+y-2)=x+y+z/(2x+2y+2z)=1/2

=>2x=x+z+1=1/2-x+1=>x=1/2

    2y=z+x+1=1/2-y+1=>y=1/2

   2z=x+y-2=1/2-z-2=>z=-1/2

28 tháng 6 2019

a)Theo đề bài và t/c dãy tỉ số bằng nhau suy ra:

\(\frac{x}{x+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)(1)

Mặt khác \(\frac{x}{x+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=x+y+z\) .

Do đó \(x+y+z=\frac{1}{2}\Rightarrow x+y=\frac{1}{2}-z;...\text{tương tự mấy cái kia}\)

Suy ra \(\frac{x}{z+y+1}=\frac{1}{2}\Leftrightarrow\frac{x}{\frac{1}{2}-x+1}=\frac{1}{2}\Leftrightarrow\frac{2x}{3-2x}=\frac{1}{2}\)

\(\Leftrightarrow4x=3-2x\Leftrightarrow x=\frac{1}{2}\) .Tương tự với hai phân thức kia ta được: \(x=y=z=\frac{1}{2}\)

22 tháng 7 2018

Điều kiện x,y.z khác 0 ( hiển nhiên x+y+z khác 0)

theo tính chất tỷ lệ thức

(y+z+1)/x=(x+z+2)/y=(x+y-3)/z=(y+z+1+x+z+2+x+y-3)/(x+y+z)=2(x+y+z)/(x+y+z)

=2

\(\Rightarrow\)1/(x+y+z)=2

\(\Leftrightarrow\)x+y+z=1/2\(\Leftrightarrow\)y+z=.1/2-x(1)

.(y+z+1)/x=2\(\Leftrightarrow\)y+z+1=2x

kết hợp với (1) \(\Rightarrow\)1/2-x+1=2x

\(\Leftrightarrow\)x=1/2\(\Rightarrow\)y+z=0\(\Leftrightarrow\)y=-z

có (x+y-3)/z=2

\(\Leftrightarrow\)x+y-3=2z

\(\Leftrightarrow\)y-2z=5/2

do y=-z=\(\Rightarrow\)-3z=5/2\(\Leftrightarrow\)z=-5/6

y=5/6

Vậy nghiệm tìm được:(x,y,z) =(1/2,5/6,-5/6)

13 tháng 8 2017

ta co \(\frac{x+z+2}{y}\)=\(\frac{y+z+1}{x}\)=\(\frac{x+y-3}{z}\)=\(\frac{x+z+2+y+z+1+x+y-3}{x+y+z}\)

=\(\frac{2\left(x+y+z\right)}{x+y+z}\)=\(\frac{1}{x+y+z}\)=>\(x+y+z\)=\(\frac{1}{2}\)

=>\(\frac{x+z+2}{y}\)=\(\frac{1}{\frac{1}{2}}\)=2 =>\(\frac{x+z+2}{y}\)+\(1\)=\(3\)

=>\(\frac{x+y+z+2}{y}\)=\(3\)=>\(\frac{5}{\frac{2}{y}}\)=\(3\) =>\(y\)=\(\frac{5}{6}\)

tinh x ,z cung tuong tu nhu vay

14 tháng 8 2017

ê hoàn ơi mày là thằng gà, hồi trc mày còn bảo tao cách làm vậy o tao voi nhe thang hoan kia

mà bây giờ mày quên là sao, ngu ko tả nổi, mà mày k ch

25 tháng 2 2019

Với \(x+y+z=0\) \(\Rightarrow x=y=z=0\) (trái với đk đề bài)

Với \(x+y+z\ne0\),áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{z+y+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

\(\Rightarrow\hept{\begin{cases}2x=y+z+1\\2y=x+z+1\\2z=x+y-2\end{cases}}\)

Mà x+y+z=1/2. Thay vào tìm đc x;y;z =]]

4 tháng 11 2016

y+x+z bằng bao nhiêu mới tính ra được chứ?? sai đề à??