Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x/3=y/5=x+y/3+5=16/8=2
x/3=2 suy ra x=6
y/5=2 suy ra y=10
x/2=y/3suy ra x/8=y/12
y/4=z/5 suy ra y/12=z/15
x/8=y/12=z/15=x+y-z/8+12-15=10/5=2
x/8=2 suy ra x=16
y/12=2 suy ra y=24
x/15=2 suy ra z=30
bài 2 :
ta có x:y:z=3:5:(-2)
=>x/3=y/5=z/-2
=>5x/15=y/5=3z/-6
áp dụng tc dãy ... ta có :
5x/15=y/5=3z/-6=5x-y+3z/15-5+(-6)=-16/4=-4
=>x/3=-=>x=-12
=>y/5=-4=>y=-20
=>z/-2=-4=>z=8
a) ADTCDTSBN
có: \(\frac{x}{2}=\frac{z}{4}=\frac{x+z}{2+4}=\frac{18}{6}=3.\)
=> x/2 = 3 => x = 6
y/3 = 3 => y = 9
z/4 = 3 => z = 12
KL:...
b,c làm tương tự nha
d) ta có: \(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{2x}{10}\)
ADTCDTSBN
có: \(\frac{2x}{10}=\frac{y}{-6}=\frac{z}{7}=\frac{2x+y-z}{10+\left(-6\right)-7}=\frac{49}{-3}\)
=>...
e) ADTCDTSBN
có: \(\frac{x+1}{2}=\frac{y+2}{3}=\frac{z+3}{4}=\frac{x+1+y+2+z+3}{2+3+4}=\frac{\left(x+y+z\right)+\left(1+2+3\right)}{9}\)
\(=\frac{21+6}{9}=\frac{27}{9}=3\)
=>...
g) ta có: \(\frac{x}{4}=\frac{y}{3}=k\Rightarrow\hept{\begin{cases}x=4k\\y=3k\end{cases}}\)
mà xy = 12 => 4k.3k = 12
12.k2 = 12
k2 = 1
=> k = 1 hoặc k = -1
=> x = 4.1 = 4
y = 3.1 = 3
x=4.(-1) = -4
y=3.(-1) = -3
KL:...
h) ta có: \(\frac{x}{5}=\frac{y}{3}\Rightarrow\frac{x^2}{25}=\frac{y^2}{9}\)
ADTCDTSBN
có: \(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{16}{16}=1\)
=>...
Dựa vào tỉ số bằng nhau ta đc:
a)\(3x-2y=0\Rightarrow3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau ta đc:
\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{x-y}{2-3}=\frac{16}{-1}=-16\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=-16\\\frac{y}{3}=-16\end{cases}\Rightarrow}\hept{\begin{cases}x=-32\\y=-48\end{cases}}\)
Các câu kia tg tự nha
c)
\(\frac{4}{x}=\frac{6}{y}=\frac{x}{6}=\frac{y}{4}\) và x + y = 5
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{x}{6}=\frac{y}{4}\Rightarrow\frac{x+y}{6+4}=\frac{5}{10}=\frac{1}{2}\)
\(\frac{x}{6}=\frac{1}{2}\Rightarrow x=\frac{1.6}{2}=3\)
\(\frac{y}{4}=\frac{1}{2}\Rightarrow y=\frac{1.4}{2}=2\)
Vậy...
a) \(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau , ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{4}=\frac{2x}{4}=\frac{3y}{15}=\frac{z}{4}=\frac{2x-3y+z}{4-15+4}=\frac{112}{7}=16\)
\(\frac{x}{2}=16=>x=32\)
\(\frac{y}{5}=16=>x=80\)
\(\frac{z}{4}=16=>z=64\)
Câu b) tương tự chỉ cần thay số vào nha bạn
\(\dfrac{x}{y}=\dfrac{2}{5}\rightarrow\dfrac{x}{2}=\dfrac{y}{5}\)
\(\dfrac{y}{z}=\dfrac{5}{3}\rightarrow\dfrac{y}{5}=\dfrac{z}{3}\)
Ta có: \(\dfrac{x}{2}=\dfrac{y}{5},\dfrac{y}{5}=\dfrac{z}{3}\rightarrow\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}\rightarrow\dfrac{2x}{4}=\dfrac{y}{5}=\dfrac{3z}{9}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`(2x)/4=y/5=(3z)/9=(2x-y+3z)/(4-5+9)=16/8=2`
`-> x/2=y/5=z/3=2`
`-> x=2*2=4, y=2*5=10, z=2*3=6`
`x/5=y/3 -> x/25=y/15`
`y/5=z/4 -> y/15=z/12`
`x/25=y/15, y/15=z/12`
`-> x/25=y/15=z/12`
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
`x/25=y/15=z/12=(x-y+z)/(25-15+12)=22/22=1`
`-> x/25=y/15=z/12=1`
`-> x=25, y=15, z=12`
a: x/y=2/5
=>x/2=y/5
y/z=5/3
=>y/5=z/3
=>x/2=y/5=z/3
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{z}{3}=\dfrac{2x-y+3z}{2\cdot2-5+3\cdot3}=\dfrac{16}{8}=2\)
=>x=4; y=10; z=6
b: x/5=y/3
=>x/25=y/15
y/5=z/4
=>y/15=z/12
=>x/25=y/15=z/12
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{25}=\dfrac{y}{15}=\dfrac{z}{12}=\dfrac{x-y+z}{25-15+12}=1\)
=>x=25; y=15; z=12
bài 1 : a,ta có 3/x-1 =4/y-2=5/z-3 => x-1/3=y-2/4=z-3/5
áp dụng .... => x-1+y-2+z-3 / 3+4+5 = x+y+z-1-2-3/3+4+5 = 12/12=1
do x-1/3 = 1 => x-1 = 3 => x= 4 ( tìm y,z tương tự
Bài 1:
a) Ta có: 3/x - 1 = 4/y - 2 = 5/z - 3 => x - 1/3 = y - 2/4 = z - 3/5 áp dụng ... =>x - 1 + y - 2 + z - 3/3 + 4 + 5 = x + y + z - 1 - 2 - 3/3 + 4 + 5 = 12/12 = 1 do x - 1/3 = 1 => x - 1 = 3 => x = 4 ( tìm y, z tương tự )
Ta có: +) \(\dfrac{x}{2}=\dfrac{y}{3}=>\dfrac{x}{8}=\dfrac{y}{12}\)
+) \(\dfrac{y}{4}=\dfrac{z}{5}=>\dfrac{y}{12}=\dfrac{z}{15}\)
Từ trên suy ra \(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{8}=\dfrac{y}{12}=\dfrac{z}{15}=\dfrac{x^2-y^2}{64-144}=\dfrac{-16}{-80}=\dfrac{1}{5}\)
=> x=\(\dfrac{1}{5}.8=\dfrac{8}{5}\) ; y=\(\dfrac{1}{5}.12=\dfrac{12}{5}\) ; z=\(\dfrac{1}{5}.15=\dfrac{15}{5}=3\)
Vậy x=\(\dfrac{8}{5}\) ; y=\(\dfrac{12}{5}\) ; z=3